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A generalizable pathology foundation 
model using a unified knowledge distillation 
pretraining framework
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Ronald Cheong Kin Chan10, Jiguang Wang    11,12, Peng Fei    13, 
Kwang-Ting Cheng    1,5, Shaoting Zhang    4,14  , Li Liang    2,3,15   & 
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The generalization ability of foundation models in the field of 
computational pathology (CPath) is crucial for their clinical success. 
However, current foundation models have only been evaluated on a limited 
type and number of tasks, leaving their generalization ability unclear. 
We establish a comprehensive benchmark to evaluate the performance 
of off-the-shelf foundation models across six distinct clinical task types, 
encompassing a total of 72 specific tasks. Our findings reveal that existing 
foundation models excel at certain task types but struggle to effectively 
handle the full breadth of clinical tasks. To improve the generalization of 
pathology foundation models, we propose a unified knowledge distillation 
framework consisting of both expert and self knowledge distillation, 
where the former allows the model to learn from the knowledge of multiple 
expert models, while the latter leverages self distillation to enable image 
representation learning via local–global alignment. On the basis of this 
framework, we develop a Generalizable Pathology Foundation Model 
(GPFM). Evaluated on the established benchmark, GPFM achieves an 
average rank of 1.6, ranking first in 42 tasks, positioning it as a promising 
method for feature representation in CPath.

In recent decades, the shift to digital pathology, particularly through 
whole slide imaging, has modernized the workflow of clinicians and 
improved access to slide data1. This has paved the way for compu-
tational pathology (CPath), an emerging field that leverages digital 
whole slide images (WSIs) and computational methods for clinical 
decision-making2–4. Specifically, CPath introduces advanced capa-
bilities such as gene mutation prediction5–7, direct prognosis8–10 and 
treatment response assessment11–13 directly from WSIs, demonstrat-
ing profound clinical importance. However, the diversity of clinical 

pathology tasks, combined with the limited data and annotations, poses 
challenges when training robust models for each individual task from 
scratch. This process is not only time consuming but also impractical in 
real-world scenarios4. Consequently, the CPath community is actively 
seeking solutions that can effectively address this diverse range of 
tasks simultaneously14–20.

In recent years, there has been progress in the fields of computer 
vision and natural language processing driven by self-supervised 
learning on large-scale datasets. These pretrained models, commonly 
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models. The results showed that all P values were below 0.001, confirm-
ing that GPFM consistently and significantly outperformed the existing 
FMs. Considering both the ranking perspective and the average metric 
aspect, the results clearly indicate that GPFM achieves state-of-the-art 
performance and is much more generalizable compared with the other 
FMs.

WSI classification
WSI classification is pivotal in accurate cancer diagnosis. It aids in 
categorizing the specific subtype of cancer, which can be substan-
tially improved by using FMs. Therefore, it is important to evaluate the 
representation learning capabilities of different FMs. We conducted 
experiments on a total of 36 tasks, including 20 internal validation 
datasets and 16 external validation datasets. The detailed experimental 
results are presented in Supplementary Tables 1–18.

Across 36 WSI classification tasks, ranked according to the area 
under the curve (AUC) metric, GPFM achieved an outstanding average 
ranking score of 1.22, decisively surpassing the second-best model, 
UNI, which attained an average ranking score of 3.60 (Fig. 3a). We 
assessed overall performance using average metrics: AUC, balanced 
accuracy, and weighted F1 score. Specifically, GPFM achieved the high-
est average AUC of 0.891, a 1.6% improvement over UNI (P < 0.001; 
Fig. 3d). Similarly, GPFM outperformed UNI in balanced accuracy 
(0.752, +3.1%, P < 0.001; Fig. 3b) and weighted F1 score (0.736, +3.0%, 
P < 0.001; Fig. 3c). In addition, GPFM achieved the best performance 
in both internal and external tasks, with AUCs of 0.938 (+1.6% over UNI; 
Fig. 3e) and 0.832 (+1.5% over UNI; Fig. 3f). These results across multiple 
metrics highlight GPFM’s strong generalization capability and potential 
for WSI classification tasks.

GPFM enhances diagnostic accuracy across multiple cancer types. 
GPFM demonstrates superior diagnostic accuracy across a range of 
cancer types and tasks. In breast cancer, GPFM outperforms other 
models in all 6 evaluated tasks, including 5 subtyping tasks (Fig. 3j and 
Extended Data Fig. 1a) and 1 metastasis detection task (Extended Data 
Fig. 1d). For lung cancer, GPFM excels in 3 subtyping tasks, 2 metastasis 
detection tasks and 2 primary site prediction tasks (Extended Data 
Fig. 1b,f,h), except for 1 external validation for lung cancer metastasis 
detection, where UNI performs slightly better. In gastric cancer, GPFM 
achieves the best performance in 6 out of 9 tasks, including vascular 
invasion detection (Fig. 3h), perineural invasion detection and Lauren 
subtyping (Extended Data Fig. 1g,i). Furthermore, GPFM consistently 
delivers top performance in tasks involving other organs, such as brain 
tumour subtyping, head and neck cancer primary site and T stage 
prediction, colon lesion grading, prostate cancer grade assessment, 
ovarian cancer subtyping (Extended Data Fig. 2b–d, and Fig. 3i,g) and 
renal cell carcinoma classification (Fig. 3g). Overall, GPFM establishes 
itself as a leading model in cancer diagnosis across diverse tasks and 
cancer types.

GPFM advances gene mutation prediction. We conducted experi-
ments on lung cancer and brain cancer slides. GPFM achieved the best 
results in both TP53 mutation prediction for lung cancer, with an AUC 
of 0.855 (+1.3% over Phikon; Extended Data Fig. 1e), and IDH1 mutation 
prediction for glioma, with an internal AUC of 0.986 and an external 
AUC of 0.943 (Extended Data Fig. 2a).

These results, along with the cancer diagnosis findings, highlight 
GPFM’s superior generalizability compared with existing FMs. A key 
factor in this success is GPFM’s ability to integrate knowledge from 
expert models through a unified knowledge distillation mechanism. 
Unlike previous FMs that do not employ knowledge distillation, GPFM 
leverages this approach to learn from a broader range of data and 
perspectives, dramatically enhancing its performance. This capability 
underscores GPFM’s advanced adaptability and effectiveness across 
diverse tasks.

referred to as foundation models (FM), have garnered widespread atten-
tion and have exhibited remarkable success across various tasks21–23.  
In the field of CPath, some efforts24,24–29,30–32 have been dedicated to 
pretraining FMs that can learn inherent representations of histopa-
thology images, catering to the diverse array of tasks encountered in 
clinical pathology practice. However, the current FMs have only been 
evaluated on a limited type of tasks (Fig. 2a), leaving their overall per-
formance unclear. To comprehensively evaluate these models, we built 
a comprehensive benchmark spanning six major clinical task categories 
(Fig. 1d), comprising 72 specific tasks. Our findings revealed that the 
generalization ability of these models is still limited and no single model 
can effectively address all the tasks (Fig. 1d). It can be seen that UNI26 
achieves the best performance in WSI classification, image retrieval, 
survival analysis and patch-level (region-of-interest (ROI)) tissue clas-
sification tasks; Phikon25 performs best in report generation tasks; and 
CONCH28 obtains highest performance in visual question answering 
(VQA) tasks. This can be attributed to the fact that each FM is trained 
using distinct datasets and pretraining strategies, leading to specific 
advantages for each model within particular datasets. These findings 
highlight the need for further research to develop more generalizable 
FMs that can consistently perform well across the diverse types of 
clinical tasks encountered in CPath. By addressing this challenge, we 
can unlock the full potential of the FMs in CPath.

To improve the generalization of pathology FM and enhance 
the overall performance, an intuitive idea is to leverage the specific 
strengths of existing models by employing knowledge distillation 
techniques33,34. Accordingly, we proposed a self-supervised learning 
framework with expert and self knowledge distillation to develop a 
Generalizable Pathology Foundation Model (GPFM). On the basis of the 
aforementioned pretraining method, we collected a dataset compris-
ing 95,572 slides, encompassing 34 major tissue types, for the purpose 
of training and evaluating the GPFM. From this collection, we extracted 
190 million patches derived from 72,280 slides to facilitate the pretrain-
ing (Fig. 1a). With the collected diverse tissues and indirectly using the 
images used to pretrain expert models (for example, UNI and CONCH), 
GPFM exhibits outstanding performance across the established bench-
marks (Fig. 1b,c), achieving an average rank of 1.6, while the second 
best-performing model, UNI, achieves an average rank of 3.7 (Fig. 2c). 
These results demonstrate the efficacy of GPFM as a generalizable FM 
in CPath. The consistent performance of GPFM across a diverse range 
of clinical tasks underscores the advantages of employing knowledge 
distillation to integrate the strengths of specialized expert models.

Results
We evaluated various FMs across 72 tasks, encompassing 36 WSI classi-
fication tasks, 15 survival analysis tasks, 16 patch-level (ROI) tissue clas-
sification tasks, 2 pathological visual question answering tasks, 2 report 
generation tasks and 1 pathological image retrieval task (Fig. 2e–g).  
Since the tasks involved different types of evaluation metric, we 
assessed the overall performance of the FMs using an average rank-
ing approach and reported the critical difference (CD) diagram35–37. 
The model with the best performance was ranked 1st, while the model 
with the lowest performance was ranked 9th. Across all tasks, the GPFM 
model achieved the top average rank score of 1.6 (ranked first in 42 
tasks), outperforming the second-best model, UNI, which had a rank-
ing score of 3.7 (ranked first in 6 tasks). To evaluate the significance of 
GPFM’s ranking score relative to other FMs, we performed the Nemenyi 
statistical test35 (Fig. 2d). The results demonstrate that GPFM exhibited 
a statistically significant critical difference compared with the other 
eight models.

We calculated the average evaluation metrics across all 72 tasks 
(Fig. 2b), revealing that GPFM achieved the highest average score of 
0.833, surpassing the second-best model, UNI, which scored 0.818. To 
assess statistical significance, we conducted a Wilcoxon signed-rank 
two-sided test35 comparing GPFM with the second- and third-best 
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Survival analysis
Accurate prediction of a patient’s survival risk can enable more tar-
geted and effective treatment strategies38–41. A robust FM is essential for 
improving the precision of survival risk prediction, ultimately leading 
to better patient outcomes. To evaluate the performance of various 
FMs in survival analysis, we conducted experiments on 15 datasets. 
Following the methodologies of previous works39,41,42, we adopted the 
Concordance index (C-index) as the evaluation metric to compare the 
performance of different FMs.

Across the 15 survival analysis tasks, GPFM achieved an impres-
sive average ranking score of 2.1, ensuring the best or second-best 
performance in 13 tasks (Fig. 4a,d–f and Supplementary Tables 19–23). 
In comparison, the second best-performing model, UNI, attained an 
average ranking score of 4.6, achieving top-2 performance in only 4 
tasks (Fig. 4a,d–f). Furthermore, when evaluated using the widely 
recognized C-Iindex metric, GPFM emerged as the top performer, 
achieving an average C-index of 0.665 (Fig. 4b). This result represents 
a statistically significant improvement of 3.4% over UNI (P < 0.001), 
further demonstrating the superior generalization capability of GPFM 
for survival analysis tasks. To further validate the generalization of FMs, 
we conducted additional validation studies, including one external 
validation for head and neck cancer (TCGA-HNSC) and one internal 
validation for lung adenocarcinoma (TCGA-LUAD). In the head and neck 
cancer survival prediction task, UNI achieved the best performance 
in both the TCGA-HNSC and HANCOCK cohorts, while our method 

ranked as the second-best performer (Fig. 4c). However, in the lung 
adenocarcinoma task, GPFM demonstrated a 10.6% improvement in 
the CPTAC-LUAD cohort (Extended Data Fig. 3h) compared with UNI.

Survival analysis tasks are inherently more challenging than WSI 
classification, and no single model has been able to dominate these 
tasks (Fig. 2e). The experimental results from both WSI classification 
and survival analysis highlight the limited generalization capability of 
existing FMs. This limitation is probably attributable to the data distri-
bution of their training sets and the pretraining methods they employ. 
While existing FMs exhibit limited generalization, they demonstrate 
exceptional performance on specific types of tasks. By leveraging their 
individual strengths, it is possible to construct a more powerful and 
versatile model. This is precisely what we have achieved in this study: 
we propose a unified distillation framework to distill the capabilities 
of existing models—particularly in tasks where they excel—into GPFM, 
thereby substantially enhancing its generalization ability.

ROI classification
The performance of WSI classification is influenced by both the feature 
extractor (that is, FM) and the multiple instance learning (MIL) method. 
Unlike WSI classification, ROI classification tasks allow for a direct 
assessment of the FMs’ feature representation capabilities, independ-
ent of MIL methods. To this end, we employed a linear probe approach, 
as outlined in ref. 43, to evaluate the FMs. Our assessment spanned 
16 ROI classification tasks, encompassing 13 internal and 3 external 
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Fig. 1 | Overview of the GPFM. GPFM is a state-of-the-art pretrained FM that 
demonstrates exceptional performance across 72 diverse tasks. a, The GPFM 
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tissue types, enabling comprehensive model training and evaluation.  
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comprehensive analysis, including additional FMs, please see Fig. 2.  

d, Overview of unified knowledge distillation for GPFM. The experts used 
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exponential moving average (EMA).
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validation datasets. Comprehensive findings from these evaluations 
are catalogued in Supplementary Tables 24–36.

GPFM emerged as the top performer across all 16 ROI classifica-
tion tasks, securing the best ranking score of 1.88, outperforming the 
second-ranked model, Prov-Gigapath, which scored 3.09 (Fig. 5a). In 
terms of conventional metrics, GPFM achieved the highest average 
AUC of 0.946 (+0.2% over Prov-Gigapath, P < 0.001; Fig. 5d), the best 
weighted F1 score of 0.865 (+0.9%, P < 0.001; Fig. 5c), and the highest 

balanced accuracy of 0.866 (+1%, P < 0.001; Fig. 5b). GPFM exhibited 
outstanding performance in several tasks, including the detection of 
metastatic tissue in breast cancer (Fig. 5g), tissue type classification 
in lung cancer (Fig. 5h), the classification of tumour-infiltrating lym-
phocytes (TILs) (Fig. 5j), and the classification of gastric cancer tissues 
(Fig. 5k). In relatively simpler ROI classification tasks, GPFM shared the 
top rank with other FMs. For instance, in pancancer tissue classification 
(Extended Data Fig. 3f), breast tumour classification (Extended Data 
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Fig. 2 | Comprehensive comparison of FMs across 72 tasks. a, Task types 
evaluated by different FMs. b, Average performance of FMs across 72 tasks: 
WSI classification and tissue classification tasks are measured by AUC; survival 
analysis tasks are measured by the C-index; the VQA task is measured by overall 
accuracy; the report generation task is measured by the average metric of 
BLEU, METEOR and ROUGE-L; the image retrieval task is measured by average 
accuracy. Wilcoxon signed-rank two-sided test was employed to detect 
significant differences between off-the-shelf FMs and the proposed GPFM. 
Error bars indicate 95% CIs. The figure demonstrates that GPFM achieved the 
highest average performance. c, Average ranks of FMs across 72 downstream 
tasks. The minima and maxima represent the lower and upper bounds of the 

95% CIs, respectively; the centre and the bounds of the box represent the mean 
and standard error, respectively. d, Critical differences (CD) diagram of average 
ranking scores with the Nemenyi test. In the CD figure, there are no significant 
differences between the models covered by the black line. e,f, Ranking order of 
FMs across 32 (e) and 20 (f) internal tasks. g, Ranking order of FMs on 20 external 
validation datasets. If a model achieves the best performance, its rank value is set 
to 1. If two models have the same metric value, indicating a tie, the average rank 
value is assigned to all the tied models. For WSI-VQA, rank was determined by 
the average of linguistic evaluation metrics and closed accuracy. The evaluation 
metrics used to derive the ranking scores for the remaining tasks are consistent 
with those applied in b.
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Fig. 3 | Performance of FMs on WSI classification tasks. a, Average ranking of 
FMs based on AUC across 36 WSI classification tasks. b–d, Average balanced 
accuracy (ACC) (b), weighted F1 score (F1) (c) and AUC (d) of FMs across 36 WSI 
classification tasks. e, Average AUC of FMs on 20 internal WSI classification tasks. 
f, Average AUC of FMs on 16 external validation cohorts. For a–f, the minima 
and maxima represent the lower and upper bounds of the 95% CIs, respectively; 
the centre and the bounds of the box represent the mean and standard error, 

respectively. g–j, Model performance on specific tasks: RCC subtyping (g), 
vascular invasion detection (h), ovarian cancer subtyping (i) and breast 
carcinoma subtyping (j). The Wilcoxon signed-rank two-sided test was employed 
for data analysis (1,000 bootstrap replicates). * represents external validation 
cohorts. Error bars represent 95% CIs; the centre indicates mean. Additional 
results are shown in Extended Data Figs. 1 and 2.
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Fig. 3b), colorectal cancer tissue classification (Fig. 5f) and kidney tissue 
classification (Fig. 5e), GPFM achieved performance on par with other 
leading FMs. In tasks where GPFM did not achieve the top performance, 
it consistently ranked as the second-best method (Extended Data 
Fig. 3a,d,e, and Fig. 5i) or the third-best method (Extended Data Fig. 3c). 
This consistent high ranking across diverse tasks contributed to GPFM’s 
overall superior performance. In addition, the average ranking scores 
(Fig. 5a) of UNI and Prov-Gigapath are close, with ranking scores of 
3.2 and 3.1, respectively. This indicates that no single existing model 
dominates ROI classification tasks. In contrast, by integrating knowl-
edge from all adopted expert models, the unified knowledge distilla-
tion enables GPFM to surpass the performance of individual models, 
achieving a substantially lower average ranking score (that is, higher 
rank) of 1.88, outperforming the next-best model by more than one 
point. This underscores GPFM’s strength as a highly generalizable FM.

Furthermore, to evaluate the robustness of GPFM in handling images 
with varying resolutions, we visualized the heat map of attention scores 
between the [patch] tokens and [CLS] tokens of the ViT transformer 
(Extended Data Fig. 3g). Across four resolutions: 224 × 224, 448 × 448, 
896 × 896 and 1,344 × 1,344, we observed consistent attention patterns, 
highlighting GPFM’s robustness in adapting to different image resolutions.

Pathological image retrieval
Image retrieval techniques could match the new patient pathology 
images to a curated database of previously diagnosed cases, providing 
pathologists with a novel tool to enhance diagnostic accuracy. Through 
visual inspection and comparison of similar historical cases, patholo-
gists can leverage image search functionality to enhance their diagnostic 
decision-making. In this study, we employ the colorectal cancer (CRC)-
100K dataset44 for conducting pathological image retrieval tasks.

TCGA-GBM TCGA-LGG TCGA-LUAD TCGA-SKCM
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TCGA-CESC TCGA-LUSC TCGA-COADREAD TCGA-STAD
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

TCGA-BLCA TCGA-KIRC TCGA-KIRP TCGA-BRCA
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Resnet50 CtranspathPhikon UNI CONCH GPFMProv-GigapathCHIEFPLIP

Ra
nk

in
g 

sc
or

e

C
-in

de
x

C
-in

de
x

Average C-index

C
-in

de
x

C
-in

de
x

C
-in

de
x

P = 1.0
P < 0.001 P < 0.001

P = 1.0

P = 0.467

P = 0.224

P = 1.0

P = 1.0 P = 0.389

P = 1.0

P = 1.0

P < 0.001

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
TCGA-HNSC HANCOCK*

10

9

8

7

6

5

4

3

2

1

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85a b c

d

e

f

Fig. 4 | Performance of FMs across 15 survival analysis tasks. a, Average ranking 
of FMs in 15 survival analysis tasks. b, Average C-index of various FMs across 15 
tasks. c, Results on TCGA-HNSC data and the HANCOCK cohort. The survival 
prediction model was trained on the TCGA-HNSC cohort and subsequently tested 
on the HANCOCK cohort. d–f, C-index of FMs across 12 survival analysis tasks.  

In all boxplots, the minima and maxima represent the lower and upper bounds of 
the 95% CIs, the centre represents the mean, and the bounds of box represent the 
standard error. Wilcoxon signed-rank two-sided test was used for data analysis 
(1,000 bootstrap replicates).
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The experimental results (Fig. 6a and Supplementary Table 37) 
show that the GPFM model achieved the second-best top-1 accuracy 
with a value of 0.906 (−1.9%, Prov-Gigapath). However, GPFM outper-
forms other models in terms of top-3 and top-5 accuracy, achieving val-
ues of 0.993 (+0.5%, Prov-Gigapath) and 0.995 (+0.2%, Prov-Gigapath), 
respectively. To further explore clustering effect and feature rep-
resentation ability, we used t-distributed stochastic neighbour 

embedding (t-SNE)45 to project the features extracted by GPFM into 
a two-dimensional (2D) embedding space. The categories are well 
clustered, further illustrating that the features are highly discrimina-
tive (Fig. 6b). We also visualized the feature distribution of other FMs 
(Extended Data Fig. 4). The features extracted by GPFM are clustered 
more tightly and the query image is also located within the candidate 
cluster, indicating a better clustering effect. This observation suggests 
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Fig. 5 | Performance of FMs on tissue classification tasks. a, Average ranking 
order of FMs based on AUC across 16 tasks. b–d, Average balanced accuracy 
(ACC) (b), weighted F1 score (F1) (c) and AUC (d) of FMs across 16 tasks. The 
centre represents the mean and the bounds of the box represent the standard 
error; the minima and maxima represent the lower and upper bounds of the 95% 
CIs. e–i, AUC of FMs across 5 tissue classification tasks. The centre in violin plots 

represents the mean AUC. j, Tumour-infiltrating lymphocyte classification based 
on the PanCancer-TIL (internal) and Center-3-TIL (external) datasets. k, Gastric 
cancer tissue classification with GasHisDB (internal) and Center-3-GC (external) 
datasets. In all panels, error bars indicate 95% CIs. Wilcoxon signed-rank two-
sided test was used for data analysis (1,000 bootstrap replicates). More results 
are presented in Extended Data Fig. 3.
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that GPFM has superior feature representation capabilities in capturing 
the intrinsic patterns and structures present in the data.

Pathological image VQA
VQA is an exciting field of artificial intelligence (AI) that aims to enable 
machines to answer questions about visual content. In the domain of 
pathology, VQA systems can be particularly powerful, allowing clini-
cians and researchers to quickly and accurately extract relevant infor-
mation from medical images.

For the patch-level VQA task, our model achieved the second-best 
performance, with results only slightly lower than those of CONCH 
(Fig. 6c and Supplementary Table 38). CONCH is a vision–language FM 
trained on millions of image–text pairs, which inherently provides it 
with an advantage in VQA tasks. Despite this, our results highlight the 
substantial potential of our approach compared with other pure vision 
FMs. To further illustrate the capabilities of our model, we visualized 
the query images, questions and answers generated by different FMs 
(Fig. 6d,e). As demonstrated in the figures, both GPFM and CONCH 
consistently produced more-reliable and accurate answers compared 
with the other models.

Moreover, in the WSI-level VQA task46, our model achieved the best 
or second-best performance across 6 out of 7 metrics, demonstrating 
performance comparable to that of the slide-level FM CHIEF (Extended 
Data Fig. 5 and Supplementary Table 39). These results, combined 
with the patch-level findings, underscore the effectiveness of unified 
knowledge distillation. Specifically, the knowledge acquired by CONCH 
from millions of image–text pairs can be successfully distilled into 
GPFM without requiring access to the original image–text pair data. 
The strong performance of GPFM highlights the potential of leverag-
ing textual knowledge indirectly, without the need for direct use of 
text data, thereby offering a promising direction for future research 
in VQA tasks.

Pathology report generation
Pathology reports are essential components of the healthcare system, 
providing critical information to clinicians and patients about the 
diagnosis, prognosis and treatment of various medical conditions. 
These reports summarize the findings from pathological examinations, 
such as biopsies, cytology samples and surgical specimens, and play 
a vital role in guiding clinical decision-making. Traditionally, pathol-
ogy reports are written manually by pathologists and their teams, a 
time-consuming and labour-intensive process. Recent advancements 
in natural language processing and machine learning have enabled 
the development of automated pathology report generation systems, 
which can dramatically improve the efficiency and consistency of this 
critical task47–49. To assess the effectiveness of FMs in this domain, we 
evaluated their performance on the TCGA WSI-Report dataset, curated 
by ref. 47, and the PatchGastricADC22 (ref. 50) dataset.

The experimental results demonstrate that Phikon achieved the 
best performance across all six metrics, while GPFM achieved compa-
rable performance and ranked as the second-best model on both tasks 
(Fig. 6f, and Supplementary Tables 40 and 41). It is quite surprising to 
observe that vision FMs (for example, Phikon and GPFM) performed 
much better in this task than vision–language FMs such as CONCH and 
PLIP. This performance gap may be attributed to PLIP and CONCH’s 
training paradigm, which relies solely on short descriptions or cap-
tions of pathological images without access to global contextual infor-
mation. Consequently, these text–image pairs proved less effective 
for comprehensive report generation compared with their original 
VQA task applications. The examples of generated reports shown in 
Extended Data Figs. 6 and 7 certify this assumption.

To further validate these findings, we conducted stratified report 
generation analyses by stratifying the TCGA WSI-report dataset by 
major cancer types, that is, breast, lung and kidney cancers, for inde-
pendent evaluation. Results (Supplementary Table 42 and Extended 

Data Fig. 8a–c) reveal that Phikon keeps its superiority in breast and 
lung cancer report generation, yet is slightly outperformed by our 
GPFM in kidney cancer report generation. To leverage the comple-
mentary strengths of existing FMs, the proposed unified knowledge 
distillation approach can distill the capabilities of Phikon in report 
generation into the GPFM. This synergistic integration allows us to 
combine the respective strengths of these FMs, leading to the devel-
opment of a more generalizable model. To further assess clinical rel-
evance, an experienced pathologist evaluated the diagnostic reports 
using a 4-tier scoring system (Extended Data Fig. 8d). The blinded 
human-based evaluation results demonstrate GPFM’s superior perfor-
mance, achieving the highest average scores across breast, lung and 
kidney cancer reports (Supplementary Table 43 and Extended Data 
Fig. 8a–c). These expert-validated results underscore the potential 
of our unified knowledge distillation approach to generate clinically 
meaningful reports that align with pathologists’ diagnostic standards, 
marking a major step toward the practical application of AI in pathol-
ogy workflow automation.

The effectiveness of expert knowledge distillation
In the self-supervised learning framework proposed in this study, we 
introduced a unified knowledge distillation model to facilitate the 
transfer of knowledge from off-the-shelf FMs to GPFM during the pre-
training stage. To assess the effectiveness of this module, we conducted 
an experiment where we removed the Expert Knowledge Distillation 
module, resulting in a modified self-supervised learning framework 
known as DINOv2 (ref. 43). We trained both DINOv2 and GPFM on the 
same dataset and evaluated their performance in tissue classification 
tasks. The experimental results clearly demonstrate the positive impact 
of expert knowledge distillation on the performance of the models 
across 12 tasks (Extended Data Fig. 9 and Supplementary Table 44). 
The experimental results demonstrated marked improvements not 
only in the performance of individual tasks but also in overall average 
performance, with substantial enhancements observed across all three 
evaluation metrics. The AUC increased by 0.6%, the weighted F1 score 
improved by 1.8%, and the balanced accuracy showed an increase of 
1.8%. These findings provide strong evidence for the effectiveness of 
transferring knowledge from off-the-shelf pathology FMs through the 
proposed knowledge distillation learning framework. However, even 
with the distillation, GPFM still can not beat vanilla DINOv2 in all tasks 
such as Chaoyang and BreakHis, illustrating that there is still room for 
improving the distillation strategy.

Discussion
In this study, we construct a benchmark for CPath tasks. In addition, we 
introduce GPFM, a generalizable FM designed for a broad spectrum of 
CPath tasks. To enhance the model’s versatility, we propose a unified 
knowledge distillation pretraining framework, which effectively con-
solidates expertise from a variety of existing models. This innovative 
approach ensures that GPFM can adapt and excel across different CPath 
tasks. To further maximize the diversity of data used for pretraining, 
we gathered 190 million images sourced from 56 sources, spanning 34 
major tissue types. This rich dataset, combined with our advanced pre-
training methodology, empowers GPFM to surpass current FMs in per-
formance across 72 CPath tasks. Unlike other models that demonstrate 
proficiency in narrow domains—such as UNI26, which specializes in WSI 
classification, and Phikon25, which excels in report generation—GPFM 
showcases exceptional generalization, outperforming its counterparts 
across a wide array of CPath challenges by combining the strengthens 
of expert models.

Recently, several vision–language28,29 and pure vision24–26,51 pathol-
ogy FMs have been developed. However, the overall performance of 
these existing FMs is unclear due to the absence of a comprehensive 
benchmark. Our analysis reveals that no single existing model consist-
ently exhibits the best performance. This is probably because each FM 
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is trained using distinct datasets and pretraining strategies, leading 
to model-specific advantages for particular domains and datasets. 
The root of a model’s generalization ability lies in the diversity of the 
training data. Unfortunately, gathering extremely large-scale diverse 
datasets, especially for sensitive medical data, is very difficult due to 

security and privacy concerns. Therefore, it is almost impossible to 
access and use all the data used to develop the existing FM. Although 
accessing the original private training data is limited, the pretrained 
models themselves are available. Since the knowledge of the pretrained 
models is derived from the training data, we can indirectly leverage this 
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Fig. 6 | Overview of pathology tissue retrieval, VQA and report generation.  
a, Top-1, top-3 and top-5 accuracies of different FMs on pathology tissue retrieval 
tasks. b, Distribution of features extracted by GPFM. For each class, 100 samples 
from the test set were used, and a total of 900 samples were subjected to t-SNE 
dimensionality reduction to 2D. c, Performance of VQA on the PathVQA dataset, 
measured by open-ended accuracy, closed-ended accuracy and overall accuracy, 

for different FMs. d, An example of open-ended questions along with the 
answers generated by various FMs. e, Three example questions and the answers 
generated by FMs related to the query image. f, Performance of WSI report 
generation on TCGA and PatchGastricAD22 datasets. The models were measured 
by six different language quality metrics, that is, BLEU-1, BLEU-2, BLEU-3, BLEU-4, 
METEOR and ROUGE-L. In all panels, data indicate mean ± s.d.
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knowledge by using a unified knowledge distillation framework. It pro-
vides a feasible method to integrate knowledge from a large number of 
existing models under the premise of limited data and protecting data 
privacy, which has better feasibility and scalability in clinical practice. 
The substantially greater generalization ability of GPFM compared with 
existing FMs suggests that transferring knowledge from one existing 
model to another may be a more viable path to further advancing 
pathology FMs in the future, especially given the challenges of assem-
bling large-scale diverse medical datasets.

This study also has some limitations. We recognize that current 
off-the-shelf FMs still exhibit potential in specific tasks, such as Phikon 
for report generation using TCGA data. This illustrates that the pro-
posed unified knowledge distillation approach is not perfect and has 
room for improvement. Future research should concentrate on devel-
oping sophisticated methodologies to effectively distill and incorpo-
rate expert knowledge into one model, maximizing their potential 
across a broader spectrum of tasks. An example is further expanding 
the model’s parameter size to enhance its adaptability, facilitating a 
more comprehensive assimilation of knowledge from diverse FMs. In 
addition, the current GPFM is a unimodal FM, which limits its ability 
to effectively handle cross-modal tasks such as VQA. Given the preva-
lence of multimodal data in pathology, encompassing WSIs, reports 
and genomic data, the development of a multimodal pathology FM 
is more attractive. Such a model would be more adept at integrating 
heterogeneous information, offering a more holistic understanding 
of patient data and enhancing diagnostic accuracy.

Methods
FM pretraining
CPath has emerged as a groundbreaking field that synergizes the power 
of AI with the expertise of pathologists, revolutionizing the practice of 
diagnosing and analysing diseases. At the core of this transformative 
discipline lies the FM, which serves as the backbone for a wide range 
of applications in pathology. While there exist some readily available 
FMs such as Ctranspath (pretrained on 32,000 TCGA slides)24 and 
UNI26 (pretrained on 100,000 private slides), the use of public data 
remains incomplete, and the evaluation of these models in CPath tasks 
is inadequate. The limited diversity of primary sites in the pretraining 
slides also restricts the adaptability of current FMs for public CPath 
benchmarks. To facilitate the advancement of CPath, we meticulously 
curated a comprehensive dataset comprising 56 histopathology data-
sets, encompassing a wide spectrum of 34 distinct tissue types for 
pretraining and downstream task evaluation (Supplementary Table 45). 
Leveraging this large-scale dataset, we developed a self-supervised 
learning approach with unified knowledge distillation to construct an 
FM that surpasses existing models.

Dataset preparation. To boost the performance of FMs, diverse data-
sets for various tissues are necessary. We have collected over 33 data-
sets as depicted in Supplementary Table 46 (from row 1 to row 33). 
To process WSIs, we employed the OpenSlide52 and CLAM toolkit53 to 
find all non-overlapping 512 × 512 patches at level 0 that contain tis-
sues. It is worth noting that we did not scale the patches to a uniform 
resolution, opting instead to use the original resolution of each WSI. 
This approach was implemented to increase the robustness of the FMs 
to varying resolutions. For datasets that only contain ROI images, we 
extracted non-overlapping 512 × 512 patches as well. Upon processing 
all 33 datasets, we obtained a comprehensive dataset, as presented in 
Supplementary Table 47. The pretraining data consist of 72,280 WSIs 
and a total of 190,212,668 patches.

Pretraining with self and expert knowledge distillation. In CPath, 
current FMs typically rely on state-of-the-art self-supervised pretrain-
ing (SSL) methods, such as DINOv2 (ref. 43) and iBOT54. These methods 
are applied directly to either private or public datasets. For instance, 

Phikon25 was constructed on the basis of 6,093 TCGA slides using iBOT, 
while UNI was built upon ~100,000 private and public slides using 
DINOv2. Due to a larger training dataset and more powerful SSL meth-
ods, UNI outperforms Phikon in various tasks. However, UNI still lags 
behind other FMs in tasks related to text analysis and survival analysis 
due to its pretraining strategy and limited coverage of primary sites. 
To address the limitations of current FMs and further enhance their 
performance, we propose a novel pretraining strategy involving ‘uni-
fied knowledge distillation’. The framework of the proposed pretraining 
method is similar to that of DINOv2; we employ teacher–student net-
works with masking image modelling (MIM) loss55 and DINO (self distil-
lation)54,56 loss to optimize the student network (Fig. 1c). Specifically, 
given an input image x, we obtain two augmented views, u and v. Ran-
dom masking is then applied to both u and v, resulting in masked views, 
̂u and ̂v. For the MIM objective, the student network takes ̂u and ̂v  as 

inputs and aims to predict the masked tokens. With the DINO objective, 
we first crop n additional local views, wi, and extract encoded class 
([CLS]) tokens using the student network. Next, we obtain the [CLS] 
tokens of the global views (u and v) using the teacher network. Finally, 
we compute the cross-entropy loss between the local views and global 
views’ [CLS] tokens. However, this strategy fails to leverage the knowl-
edge from existing vision FMs, such as UNI and vision–language FMs 
such as CONCH28, which restricts their applicability to different tissue 
types. To facilitate the transfer of knowledge from established pathol-
ogy FMs, we propose an expert knowledge distillation module aimed 
at distilling knowledge into the student network33,57. To maximize the 
generalizability of the pretrained model, it is crucial to balance the 
performance and diversity of expert models. We evaluated several 
existing models across six different tasks, selecting those that excelled 
in classification (UNI), report generation (Phikon) and visual question 
answering (CONCH) as expert models (see Fig. 1c). The [CLS] token, 
which represents the overall information of a patch for downstream 
tasks, serves as a critical component in our approach. If the [CLS] token 
of our model aligns well with those of the expert models, it indicates 
that our model can effectively assimilate the knowledge from selected 
experts. Similarly, the [PATCH] token also contains rich information. 
For example, some methods use mean pooling to perform downstream 
tasks58. Therefore, aligning the [PATCH] token can further improve the 
effect of knowledge transfer. To achieve the above alignments, we use 
the student network to encode the global views u and v and extract the 
[CLS] and [PATCH] tokens. In addition, we employ the adopted experts 
to obtain their [CLS] and [PATCH] tokens. For aligning the class tokens, 
we use cosine similarity. As for the patch token alignment, we employ 
both cosine similarity and smooth L1 distance. The pseudocode for 
this process is outlined in Extended Data Table 1. The hyperparameters 
used in the pretraining phase are provided in Supplementary Table 48. 
Once the student network is updated, we adopt the exponential moving 
average (EMA) to update the teacher network (GPFM).

Baselines. To evaluate the performance of our FM, GPFM, we con-
ducted a comprehensive evaluation by comparing it with other vision 
FMs, namely: Ctranspath24, Phikon25, UNI26, slide-level FM CHIEF59 and 
Prov-Gigapath51, as well as visual–language FMs PLIP29 and CONCH28. 
As a baseline, we also compared these FMs with a ResNet50 (ref. 60) 
pretrained on the ImageNet dataset61. The model configurations and 
training details for all these models are presented in Supplementary 
Table 49. For all downstream tasks, it should be emphasized that feature 
extraction was consistently performed on images resized to 224 × 224 
resolution, except where explicitly stated otherwise in the experimen-
tal protocol.

WSI classification
In CPath, WSI classification typically employs multiple instance learn-
ing (MIL) as the underlying methodology. The MIL approach involves 
the following steps: (1) Non-overlapping tissue patches are cropped 
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from the original WSI, and features are extracted using a feature extrac-
tor. (2) A feature aggregator is applied to integrate the patch-level 
features into a slide-level feature, enabling classification. To preprocess 
the WSIs, we use the pipeline described in the CLAM toolkit53. Spe-
cifically, we employ the default segmentation configuration of CLAM 
to extract patches with 512 × 512 pixels at level 0 for all slides. Slides 
with a limited number of patches are discarded. Once all patches are 
extracted, we resize them to 224 × 224 pixels. We then use FMs to extract 
features from the resized patches and save these features for subse-
quent MIL analysis. There are several MIL methods available, such as 
attention-based multiple instance learning (ABMIL)62 and TransMIL63. 
After evaluating the performance of different FMs across various WSI 
classification tasks, we found that ABMIL consistently achieves the 
best results, which aligns with the findings from previous studies26,27. 
Therefore, we adopted ABMIL to evaluate the performance of differ-
ent FMs in our experiments. The architecture and training details of 
ABMIL are presented in Supplementary Table 50. For CHIEF59 and 
Prov-Gigapath51 models, we used their pretrained slide-level FM to 
perform classification.

To evaluate the performance of the MIL model, we assessed the 
balanced accuracy, weighted F1 score, and AUC, which consider the 
class imbalance present in the dataset. Our experiments encompass 36 
pathology WSI classification tasks, including 20 internal and 16 external 
validation datasets. The results of our experiments are presented in 
Supplementary Tables 1–18.

NSCLC subtyping on TCGA, CPTAC and Center-1 cohorts (2 classes). 
To perform subtyping of non-small-cell lung cancer (NSCLC), we used 
data from TCGA64, CPTAC65 and Center-1. The TCGA cohort comprises 
541 lung adenocarcinoma (LUAD) and 512 lung squamous cell carci-
noma (LUSC) samples. The data are label stratified at a ratio of 7:1:2, 
resulting in 738 slides for training, 105 slides for validation and 210 
slides for testing. For the CPTAC cohort, there are 1,077 LUSC slides 
and 1,136 LUAD slides. Similarly, this cohort was label stratified at a 7:1:2 
ratio, yielding 1,549 slides for training, 222 slides for validation and 442 
slides for testing. In addition, we included 180 LUAD slides and 30 LUSC 
slides from Center-1 for external validation. We directly predicted the 
subtype of the slides using the model trained on the TCGA cohort. The 
experimental results are presented in Supplementary Table 2.

Lung cancer metastatic detection and primary site prediction  
(2 classes and 6 classes). For metastatic detection, we used 1,198 WSIs 
from Center-1, comprising 705 patients, including 391 primary cases 
and 314 metastatic cases. To predict the primary site of metastatic 
cancer, we curated a dataset with six distinct classes: LUAD (391 cases), 
breast (55 cases), colon (186 cases), kidney (25 cases), liver (34 cases) 
and carcinoma of unknown primary (CUP, 14 cases). For both tasks, 
the data were stratified into training, validation and test sets at a ratio 
of 7:1:2. In addition, we incorporated an external validation cohort 
consisting of 530 WSIs (431 cases) from Center-2. For the metastatic 
detection task, the Center-2 cohort included 238 primary cases and 
193 metastatic cases. For the primary site prediction task, the Center-2 
cohort comprised 238 LUAD cases, 50 breast cases, 96 colon cases, 30 
kidney cases, 10 liver cases and 7 CUP cases. To facilitate distinction 
between the datasets, we designated the Center-1 cohort as Center-
1-LMD and the Center-2 cohort as Center-2-LMD. The experimental 
results are presented in Supplementary Table 3.

Renal cell carcinoma (RCC) subtyping (3 classes) on TCGA and 
Center-3 cohorts. This task contains kidney renal papillary cell carci-
noma (KIRP), kidney chromophobe (KICH) and kidney renal clear cell 
carcinoma (KIRC) WSIs from the TCGA database64. After preprocessing, 
3 KIRP slides without sufficient foreground were excluded, resulting in 
297 KIRP slides, 121 KICH slides and 519 KIRC slides for further analysis. 
For training and evaluation, we label stratified the TCGA-RCC cohort 

into a 7:1:2 train–validation–test split (656:94:187 slides). In addition, 
we adopted 28 KICH slides, 30 KIRC slides and 30 KIRP slides from 
Center-3 (Center-3-RCC) as the external cohort. The experimental 
results are reported in Supplementary Table 4.

CAMELYON for breast metastasis detection (2 classes). This dataset 
consists of a total of 899 slides, sourced from the Cancer Metastases 
in Lymph Nodes Challenge 2016 (CAMELYON16, 399 slides)66 and the 
CAMELYON17 (500 slides)67. These slides were divided into two classes: 
normal and metastasis, with a distribution of 557 slides classified as 
normal and 341 slides classified as metastasis. After image preproc-
essing, a corrupted normal slide was removed, resulting in a total of 
898 WSIs. For training and evaluation, we employed a label-stratified 
train–validation–test split at a ratio of 7:1:2. This resulted in 630 slides 
for training, 91 slides for validation and 180 slides for testing. The 
experimental result is shown in Supplementary Table 5.

Lobular and ductal carcinoma subtyping on TCGA and Center-3 
cohorts (2 classes). We used the TCGA-BRCA dataset64 and slides from 
Center-3 for both internal and external experiments. The TCGA-BRCA 
dataset contains 787 slides of invasive ductal carcinoma (IDC) and 198 
slides of invasive lobular carcinoma (ILC). For training and evaluation, 
the dataset was stratified by labels into training, validation and testing 
folds at a ratio of 7:1:2, resulting in 689 slides for training, 99 slides 
for validation and 197 slides for testing. We also adopted BRCA slides 
(Center-3-LD) from Center-3 to conduct external validation. This data-
set comprises 84 ILC slides and 299 IDC slides. The subtyping results 
are presented in Supplementary Table 6.

BRACS for breast carcinoma subtyping (3 classes and 7 classes). 
This dataset involves 547 breast carcinoma H&E slides obtained from 
187 patients68. To ensure the quality of the dataset, slides that did not 
meet the criteria for tumour proportion were excluded, resulting 
in a total of 545 slides for analysis. The dataset was derived from the 
breast carcinoma subtyping (BRCA) task, which encompasses both 
coarse-grained (benign tumours, atypical tumours and malignant 
tumours) and fine-grained (normal, pathological benign, usual ductal 
hyperplasis, flat epithelial atypia, atypical ductal hyperplasia, ductal 
carcinoma in situ and invasive carcinoma) subtyping tasks. For train-
ing and evaluation, a label-stratified train–validation–test split was 
employed, maintaining a ratio of 7:1:2 based on the fine-grained classes. 
This partitioning resulted in 382 slides for training, 54 slides for valida-
tion and 109 slides for testing. In addition, we also adopted 84 normal 
slides and 383 abnormal slides from Center-3 to perform external valida-
tion (Center-3-BRCA). The coarse-grained and fine-grained classifica-
tion results are presented in Supplementary Tables 7 and 8, respectively.

PANDA for prostate cancer grade assessment (6 classes). This 
dataset was designed for prostate cancer grade assessment and con-
sists of a total of 10,616 core needle biopsies sourced from the Prostate 
cANcer graDe Assessment (PANDA) challenge69. After preprocessing, 
slides without sufficient foreground were excluded, resulting in 10,212 
slides available for further analysis. The dataset includes the following 
subtypes: background or unknown (2,724 slides), stroma (2,602 slides), 
healthy epithelium (1,321 slides), cancerous epithelium - Gleason 3 
(1,205 slides), cancerous epithelium - Gleason 4 (1,187 slides) and can-
cerous epithelium - Gleason 5 (1,163 slides). For training and evalua-
tion, the train–validation–test cohort was label stratified at a ratio of 
7:1:2, resulting in 7,143 slides for training, 1,019 slides for validation 
and 2,040 slides for testing. The experimental results are reported in 
Supplementary Table 9.

TCGA-LUAD for lung adenocarcinoma TP53 gene mutation pre-
diction (2 classes). The LUAD TP53 gene mutation prediction task 
consists of 469 formalin-fixed paraffin-embedded H&E-stained WSIs 
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of lung adenocarcinoma sourced from the TCGA database, along with 
their TP53 gene mutation annotations. Slides without reported TP53 
mutation status were excluded from the dataset. WSIs used in this task 
were classified into 2 classes, namely TP53 mutant (248 slides) and TP53 
wildtype (221 slides). For training and evaluation, we label stratified the 
WSIs into a training–validation–test cohort at a ratio of 7:1:2, including 
345 slides for training, 41 slides for validation and 83 slides for testing. 
The experimental results for TCGA-LUAD TP53 gene mutation predic-
tion could be found in Supplementary Table 10.

The mutation status of IDH in glioma (2 classes). To predict the 
IDH mutational status in gliomas, we used data from TCGA-GBM and 
TCGA-LGG, comprising a total of 979 slides, including 722 positive slides 
and 257 negative slides. For model training and evaluation, the dataset 
was divided into training, validation and test sets at a label-stratified 
ratio of 7:1:2. In addition, to validate the robustness of our model, we 
incorporated an external validation set consisting of 852 slides (322 
positives and 530 negatives) from EBRAINS70. The detailed experi-
mental results for this task are presented in Supplementary Table 11.

Ovarian cancer subtyping (5 classes) on UBC-OCEAN and Center-3 
cohorts. To perform overian cancer classification, we adopted the 
UBC-OCEAN dataset. This dataset is a collection of 538 slides obtained 
from the UBCOvarian Cancer subtypE clAssification and outlier detec-
tioN (UBC-OCEAN) competition71,72. The main objective of this competi-
tion is to accurately classify ovarian cancer subtypes into five distinct 
categories. After image preprocessing, the slides without sufficient 
foregrounds were excluded to reduce data noise, resulting in a total of 
527 slides for further analysis. The subtypes of the dataset include clear 
cell (CC, 98 slides), endometrioid (EC, 122 slides), high-grade serous 
carcinoma (HGSC, 221 slides), low-grade serous carcinoma (LGSC, 
43 slides) and mucinous carcinoma (MC, 43 slides). For training and 
evaluation, we label stratified the data into train–validation–test folds 
at a ratio of 7:1:2 (369:52:104 slides). In addition, we also adopted 100 
CC, 100 HGSC, 38 LGSC, 97 EC and 35 MC slides from Center-3 as the 
external validation cohort (Center-3-Ovary). The experimental results 
are presented in Supplementary Table 12.

Brain tumour subtyping (3 classes). To conduct brain tumour subtyp-
ing, we used a dataset of 1,276 slides from TCGA-GBM and TCGA-LGG, 
comprising 217 oligodendroglioma slides, 164 anaplastic astrocytoma 
slides and 895 glioblastoma slides. For model training and evaluation, 
the dataset was label stratified and divided into training, validation 
and test sets, with 839, 200 and 237 slides, respectively. In addition, we 
incorporated an external validation set of 732 slides from the EBRAINS 
Digital Tumour Atlas70, which includes 84 oligodendroglioma slides, 89 
anaplastic astrocytoma slides and 559 glioblastoma slides. The experi-
mental results for this task are detailed in Supplementary Table 13.

Lesion grade classification of colon cancer. To perform lesion grade 
classification of colon cancer, we used the IMP-CRS-2024 dataset73–75 for 
experiments. This dataset comprises 847 non-neoplastic slides, 2,847 
low-grade lesion slides and 1,638 high-grade lesion slides. We adhered to 
the official dataset splits, using 3,300 slides from CRS2 for training, 1,132 
slides from CRS1 for validation and 900 slides from CRS_Test for testing. 
In addition, we incorporated an external validation set from Center-3, 
referred to as Center-3-Colon-WSI, which includes 100 non-neoplastic 
slides, 121 low-grade lesion slides and 76 high-grade lesion slides. The 
experimental results for this task are detailed in Supplementary Table 14.

Head and neck cancer primary site prediction and tumor-node- 
metastasis analysis. We employed the HANCOCK dataset76 to predict 
the primary site of head and neck tumours and to determine the T stage 
of the tumours. For primary site prediction, we used 708 slides, includ-
ing 80 hypopharynx slides, 182 larynx slides, 317 oropharynx slides and 

129 oral cavity slides. The dataset was label stratified and divided into 
495 WSIs for training, 68 WSIs for validation and 145 WSIs for testing. 
For the tumor-node-metastasis analysis task, we used 705 slides from 
the HANCOCK dataset to predict the tumour stage (T stage). This 
dataset comprises 259 T1 slides, 256 T2 slides, 123 T3 slides and 67 T4 
slides. The dataset was partitioned into training, validation and testing 
sets with 496, 67 and 142 slides, respectively. The experimental results 
for both tasks are presented in Supplementary Table 15.

Lauren subtyping of gastric cancer. We used the TCGA-STAD dataset 
to conduct Lauren classification. The TCGA-STAD cohort comprises 81 
diffuse-type, 125 mixed-type and 184 intestinal-type WSIs. For model 
training and evaluation, we divided the dataset into training, valida-
tion and test sets in a stratified 7:1:2 ratio based on labels. Further-
more, we incorporated 141 WSIs from Center-5 and 319 WSIs from 
Center-4 as external validation cohorts. The Center-5 cohort consists 
of 77 diffuse-type, 33 mixed-type and 31 intestinal-type WSIs, while 
the Center-4 cohort includes 143 diffuse-type, 86 mixed-type and 90 
intestinal-type WSIs. We detail the results of these three datasets for 
this task in Supplementary Table 16.

Vascular invasion detection in gastric cancer. To detect vascular 
invasion in gastric cancer, we used a dataset comprising 396 WSIs from 
Center-1, referred to as the Center-1-Vascular dataset. This dataset 
includes 197 positive cases and 168 negative cases. For the purpose of 
model training and evaluation, the data were partitioned into train-
ing, validation and test sets at a ratio of 7:1:2. In addition, we incor-
porated two external validation sets: 230 WSIs (140 positive and 90 
negative) from Center-5 and 319 WSIs (122 positive and 197 negative) 
from Center-4. The experimental results of all three datasets for this 
task are shown in Supplementary Table 17.

Perineural invasion detection in gastric cancer. To detect perineural 
invasion in gastric cancer, we used a dataset consisting of 397 WSIs 
obtained from Center-1. This dataset includes 255 positive cases and 
141 negative cases. For model training and evaluation, the data were 
divided into training, validation and test sets at a ratio of 7:1:2. Fur-
thermore, we incorporated two additional external validation sets: 
232 WSIs (156 positive and 76 negative) from Center-5 and 319 WSIs (112 
positive and 207 negative) from Center-4. See Supplementary Table 18 
for experimental results.

Survival analysis
Survival analysis has traditionally been employed to analyse 
time-to-event data in cancer studies, focusing on events such as dis-
ease progression or patient survival. When applied to WSIs, survival 
analysis offers new opportunities for studying various aspects of tissue 
behaviour and predicting patient outcomes42,77. By integrating survival 
analysis with WSIs, researchers can investigate the correlation between 
specific morphological features and patient outcomes. In our study, 
we adopted ABMIL62 for survival analysis with negative log-likelihood 
(NLL) loss78, following a similar model architecture and training config-
uration as WSI classification reported in Supplementary Table 50. For 
CHIEF and Prov-Gigapath models, we used their pretrained slide-level 
FM to perform classification.

To evaluate the effectiveness of different FMs in survival analysis, 
we employed a train:test split of 8:2 setting and used the C-index metric 
to assess performance. We conducted survival analysis on 14 TCGA 
datasets, including breast cancer (BRCA), bladder cancer (BLCA), 
kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell 
carcinoma (KIRP), lung adenocarcinoma (LUAD), stomach adenocar-
cinoma (STAD), lung squamous cell carcinoma (LUSC), colon adeno-
carcinoma (COAD), rectum adenocarcinoma (READ), glioblastoma 
multiforme (GBM), low-grade glioma (LGG), skin cutaneous melanoma 
(SKCM), cervical squamous cell carcinoma (CESC) and head–neck 
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squamous cell carcinoma (HNSC). In addition, we performed external 
validation on the HANCOCK dataset. The number of slides for each 
dataset is reported in Supplementary Table 51. To ensure robust and 
consistent results, we maintained uniform censorship (survival status 
information) between the training and testing datasets. To address 
the challenge of imbalanced survival times, we employed a stratified 
approach. Specifically, we sorted the cases on the basis of survival time 
and divided them into four equally sized bins. We assigned the label of 
the bin to all cases within it. As a result, we label stratified the train–test 
cohort into an 8:2 ratio. The experimental results are presented in Sup-
plementary Tables 19–23.

ROI classification
For patch-level tissue classification tasks, we evaluated the transfer 
performance and representation ability of different FMs using a linear 
probe, inspired by the approach employed in DINOv2 (refs. 43,79). Ini-
tially, we extracted features from the images using the pretrained FMs. 
Subsequently, we employed a linear layer for performing classification. 
To optimize the model, we used AdamW80 with an initial learning rate 
of 5 × 10−4 and weight decay of 1 × 10−5. In addition, we incorporated a 
cosine annealing scheduler to update the learning rate during train-
ing81. To obtain the best model, we set the maximum number of epochs 
to 3,000 and implemented early stopping with patience of 100 epochs. 
For ensuring fair comparison, we maintained a consistent batch size 
of 256 across all methods.

To evaluate the performance of patch-level tissue classification, we 
considered the impact of class imbalance in the dataset and assessed 
the metrics of balanced accuracy, weighted F1 score and AUC. These 
metrics provide comprehensive insights into classification perfor-
mance, accounting for both accuracy and the ability to handle imbal-
anced class distributions. Specifically, we compared the FMs across 
16 tasks. For all experiments in this section, we estimated model per-
formance using non-parametric bootstrapping with 1,000 bootstrap 
replicates. We employed Torchmetrics82 for bootstrapping sampling 
and obtained the mean and standard deviation of the metrics. The 
experimental results are presented in Supplementary Tables 25–36. 
Furthermore, we report the average performance of the patch-level 
tissue classification results across 12 tasks in Supplementary Table 24, 
demonstrating the superior performance of GPFM.

CRC-100K for colorectal cancer tissue classification (9 classes). 
This dataset consists of NCT-CRC-HE-100K and CRC-VAL-HE-7K44. The 
NCT-CRC-HE-100K comprises 100,000 non-overlapping 224 × 224 
patches obtained from 86 human cancer tissue slides stained with 
H&E. These tissue slides were sourced from the NCT biobank (National 
Center for Tumor Diseases) and the UMM pathology archive (University 
Medical Center Mannheim). Concurrently, CRC-VAL-HE-7K consists of 
7,180 images (224 × 224) extracted from 50 patients diagnosed with 
colorectal adenocarcinoma. The subtypes of this dataset contain: 
adipose (ADI, 11,745 ROIs), background (BACK, 11,413 ROIs), debris 
(DEB, 11,851 ROIs), lymphocytes (LYM, 12,191 ROIs), mucus (MUC, 
9,931 ROIs), smooth muscle (MUS, 14,128 ROIs), normal colon mucosa 
(NORM, 9,504 ROIs), cancer-associated stroma (STR, 10,867 ROIs) and 
colorectal adenocarcinoma epithelium (TUM, 15,550 ROIs). For training 
and evaluation, we use the official train–test split (100,000: 7,180). The 
experimental results are reported in Supplementary Table 25.

CCRCC-TCGA-HEL for CCRCC tissue classification (4 classes). This 
dataset83 comprises a total of 52,713 ROI images, each with dimensions 
of 300 × 300 pixels. The dataset encompasses six distinct categories, 
namely: renal cancer (cancer, 13,057 ROIs), normal renal tissue (normal, 
8,652 ROIs), stromal tissue (stroma, 5,460 ROIs), red blood cells (blood, 
996 ROIs), empty background (empty, 16,026 ROIs) and other textures, 
including necrotic, torn and adipose tissue (other, 8,522 ROIs). The 
image tiles were selected at random from two sources: the TCGA-KIRC 

WSIs and the Helsinki datasets. For training and evaluation, we focused 
on four specific categories: cancer, stroma, normal and blood. This 
decision was made due to the potential ambiguities associated with 
the ‘other’ category and the lack of meaningful information conveyed 
by the ‘empty’ category. We randomly shuffled the samples and set the 
train–test split at a 22,530:5,635 ratio. The experimental results are 
shown in Supplementary Table 26.

BACH for breast cancer tissue classification (4 classes). The data-
set84 was used for the breast cancer subtyping task and consists of 
400 images with dimensions of 2,048 × 1,536 pixels. The dataset was 
labelled into four classes: normal (100 ROIs), benign (100 ROIs), in situ 
carcinoma (100 ROIs) and invasive carcinoma (100 ROIs). For training 
and evaluation, all ROIs were resized to 224 × 224 pixels and we label 
stratified the train–test data at a ratio of 8:2 (320: 80 ROIs). The experi-
mental results are summarized in Supplementary Table 27.

BreakHis for breast cancer image classification (2 classes). This 
dataset85 was collected for breast cancer histopathological image 
classification and contains two main groups: benign tumours (2,480 
ROIs) and malignant tumours (5,429 ROIs). The ROIs in this dataset 
have 4 different magnifications (×40, ×100, ×200 and ×400). For train-
ing and evaluation, we resized all images to 224 × 224 pixels to ensure 
consistency and label stratified the train–test data at a ratio of 8:2 
(6,327:1,582 ROIs). The experimental results are presented in Sup-
plementary Table 27.

UniToPatho for CRC polyp classification (6 classes). This dataset is a 
meticulously annotated dataset comprising 9,536 H&E-stained patches 
extracted from 292 WSIs86. The primary objective of this dataset is to 
facilitate the training of deep neural networks for the classification 
of colorectal polyps and the grading of adenomas. The annotations 
include 6 classes: normal tissue (950 ROIs), hyperplastic polyp (545 
ROIs), tubular adenoma with high-grade dysplasia (454 ROIs), tubular 
adenoma with low-grade dysplasia (3,618 ROIs), tubulo-villous ade-
noma with high-grade dysplasia (916 ROIs) and tubulo-villous adenoma 
with low-grade dysplasia (2,186 ROIs). For training and evaluation, we 
used the official train–test split (6,270:2,399 ROIs). The experimental 
results are shown in Supplementary Table 28.

CRC-MSI for microsatellite instability (MSI) screening (2 classes). 
This dataset consists of 51,918 histological images (512 × 512) of colo-
rectal cancer obtained from the TCGA database87. In addition to the 
visual data, information regarding the MSI status of each patient was 
obtained. Patients were classified into two categories: those with high 
MSI (MSI-H) and those with either low (MSI-L) or stable (MSS) microsat-
ellite, collectively referred to as NonMSIH. For training and evaluation, 
we used the official train–test split (19,557:32,361 ROIs). The experimen-
tal results are shown in Supplementary Table 29.

PanCancer-TCGA for tissue classification (32 classes). This dataset 
comprises 271,170 images with dimensions of 256 × 256 pixels88. The 
images were extracted from 8,736 histopathology WSIs obtained from 
the TCGA database. These images represent various cancer types and 
are annotated with the following 32 classes: head and neck squamous 
cell carcinoma (11,790 ROIs), bladder urothelial carcinoma (9,990 
ROIs), uterine carcinosarcoma (2,120 ROIs), colon adenocarcinoma 
(8,150 ROIs), lymphoid neoplasm diffuse large B-cell lymphoma (8,40 
ROIs), lung squamous cell carcinoma (16,560 ROIs), brain lower grade 
glioma (23,530 ROIs), esophageal carcinoma (3,380 ROIs), pheochro-
mocytoma and paraganglioma (1,350 ROIs), sarcoma (13,480 ROIs), 
glioblastoma multiforme (23,740 ROIs), adrenocortical carcinoma 
(4,980 ROIs), uterine corpus endometrial carcinoma (12,480 ROIs), 
prostate adenocarcinoma (9,810 ROIs), breast invasive carcinoma 
(23,690 ROIs), stomach adenocarcinoma (9,670 ROIs), pancreatic 
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adenocarcinoma (4,090 ROIs), skin cutaneous melanoma (10,060 
ROIs), ovarian serous cystadenocarcinoma (2,520 ROIs), thymoma 
(3,600 ROIs), lung adenocarcinoma (16,460 ROIs), kidney renal papil-
lary cell carcinoma (6,790 ROIs), testicular germ cell tumours (6,010 
ROIs), kidney renal clear cell carcinoma (11,650 ROIs), rectum adeno-
carcinoma (1,880 ROIs), cholangiocarcinoma (900 ROIs), cervical 
squamous cell carcinoma and endocervical adenocarcinoma (6,270 
ROIs), thyroid carcinoma (11,360 ROIs), mesothelioma (2,090 ROIs), 
uveal melanoma (1,640 ROIs), liver hepatocellular carcinoma (8,370 
ROIs), and kidney chromophobe (2,460 ROIs). For training and evalua-
tion, the train–test split was set to 21,736:54,342 ROIs. The experimental 
results are summarized in Supplementary Table 30, indicating that 
GPFM outperforms other models across all three metrics.

TIL classification (2 classes). We used the PanCancer-TIL dataset89,90 
for tumour-infiltrating lymphocyte classification. It includes 304,097 
images with a size of 100 × 100 pixels at 0.5 µm per pixel. The images 
were labelled with the following two classes: TIL-positive (if there are 
at least two TILs present in the image; 54,910 ROIs) and TIL-negative 
(249,187 ROIs). For training and evaluation, we used the official train-
ing–validation–test split (209,221:38,601:56,275 ROIs). To ensure con-
sistency, we resized all images to 256 × 256 pixels. We employed the 
validation set to select the best model and subsequently evaluated 
its performance on the test set. In addition, we also adopted the data 
from Center-3 to conduct external validation. The TIL-negative samples 
(8,361 ROIs) were obtained from healthy lymph nodes of pancancer 
type, and TIL-positive samples (10,131 ROIs) were obtained from the 
marked cancerous areas on lymph nodes with metastasis. The experi-
mental results are presented in Supplementary Table 31.

ESCA for esophageal carcinoma subtyping (11 classes). This data-
set91 comprises 367,229 images with a size of 256 × 256 pixels. These 
patches were obtained from 320 H&E WSIs of esophageal adeno-
carcinoma and adenocarcinoma of the esophagogastric junction, 
specifically, 22 slides from University Hospital Cologne (UKK), 62 
slides from Landesklinikum Wiener Neustadt (WNS), 22 slides from 
TCGA and 214 slides from the University Hospital Berlin Charite  
(CHA). These images were annotated and labelled with one of eleven 
classes: adventitia (71,131 ROIs), lamina propria mucosae (2,173 ROIs), 
muscularis mucosae (2,951 ROIs), muscularis propria (83,358 ROIs), 
regression tissue (56,490 ROIs), mucosa gastric (44,416 ROIs), mus-
cosa oesophagus (18,561 ROIs), submucosa (22,117 ROIs), submucosal 
glands (1,516 ROIs), tumour (63,863 ROIs) and ulceration (753 ROIs). 
For training and evaluation, we adopted the CHA dataset, contain-
ing 178,187 ROIs, as the training set, and we combined the UKK, WNS  
and TCGA datasets as a single testing cohort consisting of 189,142 
ROIs. In our experiment, all images were resized to 224 × 224 pix-
els to ensure consistency, and experimental results are shown in  
Supplementary Table 32.

PCAM for metastatic tissue classification (2 classes). This dataset 
consists of 327,680 colour images (96 × 96 pixels) extracted from CAME-
LYON16 (refs. 66,92). Each image was annotated with a binary label indi-
cating the presence of metastatic tissue. For training and evaluation, we 
adopted the official train–validation–test split (262,144:32,768:32,768 
ROIs) and resized all images to 224 × 224 in our experiment. The experi-
mental results are presented in Supplementary Table 33.

WSSS4LUAD for lung adenocarcinoma tissue classification  
(3 classes). This dataset93,94 was collected from Guangdong Provincial 
People’s Hospital (GDPH) and TCGA. It consists of 10,091 images with 
the following three common and meaningful tissue types: tumour 
epithelial tissue (6,579 ROIs), tumour-associated stroma tissue (1,680 
ROIs) and normal tissue (1,832 ROIs). It is worth noting that in the 
WSSS4LUAD dataset, one image may belong to several categories. To 

avoid ambiguity, we only chose one label for each image on the basis 
of the order of diagnosability (that is, from tumour epithelial tissue 
to normal tissue). For training and evaluation, all images were resized 
to 224 × 224 pixels and we label stratified the train–test data at a ratio 
of 8:2 (8,072:2,019 ROIs). The experimental results are presented in 
Supplementary Table 34.

Chaoyang for colon tissue classification (4 classes). This dataset95 
contains colon patches from Chaoyang hospital including 1,816 nor-
mal ROIs, 1,163 serrated ROIs, 2,244 adenocarcinoma ROIs and 937 
adenoma ROIs. For training and evaluation, we resized all patches to 
224 × 224 pixels and used the official train–test split (4,021:2,139 ROIs). 
In addition, we adopted 9,214 normal ROIs and 11,854 adenoma ROIs 
from Center-3 for external validation. The experimental results are 
presented in Supplementary Table 35.

GasHisDB for gastric tissue classification (2 classes). The dataset 
consists of a total of 13,124 abnormal images (160 × 160) and 20,160 
normal images. For training and evaluation, we resized all patches to 
224 × 224 pixels and label stratified the train–test data at a ratio of 8:2 
(26,627:6,657 ROIs). In addition, we adopted the 709 normal tissues and 
1,828 abnormal tissues from Center-3 to perform external validation. 
Results can be found in Supplementary Table 36.

Pathological tissue retrieval
In the linear probe evaluation tasks, we extracted semantically rich 
features using different FMs and then constructed a task-specific classi-
fier. These features are not only applicable for supervised learning but 
also prove to be valuable for image-to-image retrieval. The primary goal 
of this application is to retrieve images that share the same class label 
as a given query image, thereby facilitating efficient image retrieval. 
The CRC-100K dataset comprises 100,000 non-overlapping 224 × 224 
patches extracted from 86 human cancer tissue slides stained with 
H&E for training purposes. In addition, it includes 7,180 images with 
224 × 224 pixels extracted from 50 patients diagnosed with colorectal 
adenocarcinoma for testing. The dataset consists of multiple classes, 
including adipose (ADI, 11,745 ROIs), background (BACK, 11,413 ROIs), 
debris (DEB, 11,851 ROIs), lymphocytes (LYM, 12,191 ROIs), mucus (MUC, 
9,931 ROIs), smooth muscle (MUS, 14,128 ROIs), normal colon mucosa 
(NORM, 9,504 ROIs), cancer-associated stroma (STR, 10,867 ROIs) and 
colorectal adenocarcinoma epithelium (TUM, 15,550 ROIs). For train-
ing and evaluation, we used the official train–test split, with 100,000 
samples for training and 7,180 samples for testing.

To initiate the pathological tissue image retrieval process, we 
began by embedding all images using pretrained FMs. Next, each 
image in the test set was treated as a query and compared against the 
images in the training set. To ensure that all features have a comparable 
impact on the computation of similarity, we independently normal-
ized each feature component to the range [0, 1]96. This normalization 
process involved calculating the mean and variance of the training 
set features, which were then used to normalize both the training and 
testing features.

To evaluate the similarity between the query image and candi-
date images, we employed the L2 distance metric. A lower distance 
value indicates a higher degree of similarity between the images. The 
retrieved images were subsequently ranked on the basis of their simi-
larity scores, and the corresponding class labels were used to evaluate 
the success of the retrieval process. To assess retrieval performance, we 
employed evaluation metrics such as Acc@K, where K represents the 
top-K retrieved images (typically 1, 3 and 5). Similar to the patch-level 
classification evaluation, we estimated model performance using 
non-parametric bootstrapping with 1,000 bootstrap replicates. Due 
to the limitation in the number of classes, we primarily focused on the 
CRC tissue retrieval tasks, and the experimental results are presented 
in Supplementary Table 37.
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Pathology visual question answering
The objective of this subsection is to evaluate the performance of our 
proposed pathology FM in the context of VQA tasks. To this end, we used 
the PathVQA97 and the WSI-VQA46 datasets as benchmark datasets for 
our experiments. These datasets provide a comprehensive framework 
for assessing the model’s ability to comprehend and reason about both 
patch-level and WSI-level visual pathology information, enabling accu-
rate responses to queries related to observed pathological features.

Patch-level VQA on PathVQA dataset. To evaluate the effectiveness 
of FMs in pathology VQA, we used the PathVQA dataset97, which is the 
largest and most widely used dataset in the pathology domain for VQA 
tasks. The dataset consists of 32,799 image–question–answer triplets, 
divided into three subsets: a training set (50%) containing 16,400 tri-
plets used for model training, a validation set (30%) comprising 9,840 
triplets for hyperparameter tuning and overfitting prevention, and a 
test set (20%) including 6,560 triplets for final model performance 
evaluation. To ensure a rigorous and comparative analysis, we adopted 
the multimodal unified medical captioning (MUMC) method98, which 
currently represents the state-of-the-art approach for the PathVQA 
dataset. The MUMC method has exhibited superior performance in 
leveraging the synergies between visual and textual information for 
medical image understanding tasks. The experimental results are 
reported in Supplementary Table 38.

The VQA model architecture consists of four main compo-
nents: the image encoder, text encoder, multimodal encoder and 
answering decoder. The image encoder is responsible for capturing 
domain-specific visual features. We employed various pathology FMs 
as the image encoder. During the fine-tuning process, the weights of 
the image encoder were kept frozen to preserve the integrity of the 
pretrained visual representations and focus on learning task-specific 
multimodal interactions. The text encoder is designed to process tex-
tual inputs, specifically the questions related to the pathology images. 
We uses a 6-layer transformer architecture for the text encoder. It is 
initialized with the first six layers of a pretrained BERT model, which 
has a strong track record in language understanding tasks and has dem-
onstrated excellent performance in several medical and clinical appli-
cations. The multimodal encoder is responsible for fusing visual and 
textual features. It consists of the last six layers of the pretrained BERT 
model and incorporates cross-attention mechanisms at each layer. This 
integration enables the model to learn robust multimodal interactions, 
which are crucial for effectively answering questions based on the pro-
vided pathology images. The answering decoder, which comprises a 
6-layer transformer, receives the multimodal embeddings generated 
by the previous components and generates text tokens corresponding 
to the answers. During the training stage, we fine tuned the model for 
a total of 100 epochs using a batch size of 8. To optimize the model, we 
employed the AdamW optimizer with an initial learning rate of 2 × 10−5. 
Throughout the training process, the learning rate was decayed to 
1 × 10−8 to ensure gradual convergence and stability. To evaluate the 
performance of the VQA models, we adopted accuracy as the metric, 
which is consistent with previous research studies98,99. We treated VQA 
as a generative task by calculating similarities between the generated 
answers and the candidate list of answers, selecting the answer with 
the highest score as the final answer.

WSI-level VQA on the WSI-VQA dataset. The dataset comprises 977 
WSIs and 8,671 question–answer pairs, which are divided into three 
subsets: training, validation and test. Specifically, the training sub-
set consists of 804 WSIs and 7,139 pairs, while the validation subset 
includes 87 WSIs and 798 pairs. The test subset contains 86 WSIs and 
735 pairs. In the close-ended portion of the test subset, the correct 
answers were distributed as follows: 151 for option A, 107 for B, 86 for 
C and 46 for D. For the WSI-VQA dataset, we adhered to the implemen-
tation framework proposed by ref. 46, with modifications limited to 

replacing the visual features. The experimental results are reported 
in Supplementary Table 39.

Pathology report generation
The task of pathology report generation is inspired by existing works 
on chest X-ray and other medical report generation100–102. In this task, 
the report generation model takes a WSI as input and generates the 
corresponding pathology report. Specifically, the input WSI is first pro-
cessed by FMs to extract an initial representation. This representation 
is then fed into the encoder–decoder architecture of report generation 
models to produce the decoded pathology report. During this process, 
the visual encoder further processes the initial representations of WSIs 
through specific designs47,101,102 to obtain the optimal WSI features for 
the report decoding stage. The text decoder of the model then uses 
these features for report generation. A good initial representation 
of WSI could critically facilitate both the visual encoding and textual 
decoding stages. Consequently, the quality of the generated report 
is directly influenced by the representations provided by the FMs. In 
this task, we adopted the HistGen model47 for WSI report generation 
and set the learning rate to 1 × 10−4 and weight decay to 0.8 per epoch. 
The model was trained for 40 epochs with batch size 1 using features 
extracted from different FMs.

To evaluate the report generation performance of FMs, we used 
natural language generation metrics including BLEU103, METEOR104 
and ROUGE-L105, in which BLEU was further split into BLEU-1, BLEU-2, 
BLEU-3 and BLEU-4 for evaluation of different granularities. These 
metrics provide a robust framework for evaluating machine-generated 
text, each bringing unique strengths to assess different aspects of text 
quality. This task was conducted on the TCGA WSI-Report dataset pro-
posed in ref. 47, containing 7,690 WSIs and the paired diagnosis reports 
in total, and the PatchGastricADC dataset50 which includes 991 pairs 
of histological descriptions and WSIs of stomach adenocarcinoma 
endoscopic biopsy specimens. A 7:1:2 train–validation–test split was 
employed and the experimental results are reported in Supplementary 
Tables 40 and 41.

To assess the robustness of each FM in report generation, we con-
ducted a stratified analysis of the TCGA WSI-Report dataset based 
on cancer types, focusing on major organ cancers including breast, 
lung and kidney. The stratified evaluation results are presented in 
Supplementary Table 42. In addition, we collaborated with an expe-
rienced pathologist to perform a rigorous human evaluation of the 
reports generated by different models. The evaluation employed a 
4-tier scoring system (illustrated in Extended Data Fig. 8d), and the 
scoring distribution and average score of each FM are summarized in 
Supplementary Table 43.

Computing software and hardware
In this project, we used PyTorch106 (v.2.1.2 with CUDA 12.1) for both 
pretraining and evaluating downstream tasks. To pretrain the GPFM 
model, we incorporated established FMs, namely: UNI107, Phikon108 
and CONCH109, as additional teachers. It is worth noting that access 
to UNI and CONCH requires a previous application submission. The 
GPFM model was pretrained using the FullyShardedDataParallel 
(FSDP) technique on 2 × 8 80 GB NVIDIA H800 GPU nodes. All other 
data processing and evaluation for downstream tasks were carried 
out on a server equipped with 8× NVIDIA RTX 3090 GPUs. To assess 
the model’s performance, we employed Torchmetrics (v.1.3.2)82 and 
Scikit-learn (v.1.2.2)110 for metric evaluation. For WSI processing, we 
relied on OpenSlide-Python (v.1.2.0)52 and the CLAM53,111 codebase. 
Pathology VQA evaluation was conducted using the MUMC98,112 code-
base. Furthermore, for histology report generation, we used the Hist-
Gen47,113 codebase. Matplotlib (v.3.7.1), seaborn (v.0.13.0) and Origin 
2021 were used to plot figures. Please see Supplementary Table 51 for 
a comprehensive list of the aforementioned models and libraries used 
in this study.
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Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
This study incorporates a total of 56 datasets. Out of these, 33 datasets 
were used for pretraining, and a subset of them was also employed for 
evaluation purposes (TCGA64, CPTAC65, PANDA69, NADT-Prostate114, 
BCNB115, CAMELYON66,67, BRACS68, TIGER2021 (ref. 116), MIDOG2022 
(ref. 117), AGGC2022 (ref. 118), O.B.R.119,120, ACROBAT2023 (ref. 121), 
AML-C-LMU122, ARCH123, BACH84, CAMEL124, DiagSet125, DLBCL126, 
GTEx127, HunCRC128, Janowczyk129, LC25000 (ref. 130), MIDOG2021  
(ref. 117), OCELOT131, Oste. Tumor132, PAIP2019 (ref. 133), PAIP2020  
(ref. 134), PAIP2021, Post-NAT-BRCA135, SICAPv2 (ref. 136), SLN-Breast137, 
SPIE2019 (ref. 138)). The remaining 23 datasets were specifically dedi-
cated to downstream task evaluation. The public datasets include 
PatchGastricADC22 (ref. 50), UBC-OCEAN71, WSI-VQA46, CRC-100K44, 
CRC-MSI87, CCRCC-TCGA-HEL83, PanCancer-TCGA88, PanCancer-TIL89, 
ESCA91, PCAM92, BreakHis85, UniToPatho86, Chaoyang95, PathVQA97, 
HistGen47, IMP-CRS73–75, HANCOCK76 and GasHistDB139. For detailed 
information on the public data used in this project, please see Sup-
plementary Table 45. For the data from Center-1 to Center-5, these 
datasets are not publicly available due to patient privacy obligations, 
institutional review board requirements and data use agreements. 
However, researchers interested in accessing de-identified data may 
submit a reasonable request directly to the corresponding authors, 
subject to obtaining the necessary ethical approvals and complying 
with institutional policies. The splits of the dataset can be found in our 
GitHub repository. Source data are provided with this paper.

Code availability
The code and weights of the GPFM have been made available on GitHub 
at https://github.com/birkhoffkiki/GPFM/ (ref. 140).
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Extended Data Fig. 1 | Extended Results of WSI Classification. a. Performance 
comparison of foundation models in ILC and IDC classification. b. NSCLC 
subtyping performance across models. c-e. Model performance in prostate 
cancer grading, breast cancer metastasis detection, and LUAD TP53 mutation 
prediction, respectively. f-i. Extended evaluation including lung cancer 
metastasis detection, gastric cancer Lauren subtyping, lung cancer primary site 

prediction, and gastric cancer perineural invasion detection. Violin plots show 
the distribution of 1,000 bootstrap replicates. Centre indicates mean. Error bars 
represent 95% CI. External validation cohorts are marked with *. 1,000 bootstrap 
replicates are performed for all bar plots. The Wilcoxon signed-rank two-side test 
is used for data analysis.
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Extended Data Fig. 2 | Extended Results of WSI Classification. a. IDH-1 mutation 
prediction in brain tumors. b. Lesion grading in colon cancer. c. Brain tumor 
subtyping performance. d. Dual-task evaluation: primary site prediction and 
T-stage classification in head & neck cancer. Centre indicates mean. Error bars 

represent 95% CI. External validation cohorts are marked with *. For all bar plots, 
1,000 bootstrap replicates are performed. The Wilcoxon signed-rank two-side 
test is used for data analysis.
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Extended Data Fig. 3 | Extended Result of ROI Classification Tasks. 
 a-d. The AUC of foundation models on BACH, BreakHis, UniToPatho, and ESCA, 
respectively. e. The colon tissue classification performance. The Chaoyang and 
Center-3-Colon serve as internal and external, respectively. f. The performance 
of pancancer classification of different foundation models. For all subfigures a-f, 
the error bar indicates the 95% CI and the centre represents mean. g. Attention 
heatmap of GPFM across various image resolutions for BRCA subtyping in BACH 
dataset. The colored squares represent the 14 × 14 [PATCH] tokens encoded 
by the GPFM model. The heatmap values indicate the similarity between each 
[PATCH] token and the [CLS] token generated by the last layer of GPFM, measured 

using Euclidean distance. The consistent attention patterns observed across 
varying image resolutions and tissue types underscore the robust capabilities 
of the GPFM model. h. Results on TCGA-LUAD data and the CPTAC-LUAD 
cohort. The survival prediction model was trained on the TCGA-LUAD cohort 
and subsequently tested on the CPTAC-LUAD cohort. The minima and maxima 
represent the lower and upper bound of the 95% CI, respectively. The centre and 
the bounds of box represent the mean and the standard error, respectively. For 
subfigures a-f and h, the 1,000 bootstrap replicates are performed. The Wilcoxon 
signed-rank two-side test is used for data analysis.
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Extended Data Fig. 4 | Overview of Pathology ROI Tissue Retrieval. The central 
figure illustrates the framework for pathology tissue ROI retrieval. The surrounding 
figures visualize the distribution of features extracted by different models using 
t-SNE dimensionality reduction to 2D. For each class, 100 samples from the test set 

were used, and together with the query image, a total of 901 samples were subjected 
to the t-SNE analysis. The different classes are distinctly colored in the 2D t-SNE plot. 
The retrieved top-5 images for the query are also shown, demonstrating the GPFM’s 
performance on this pathology tissue retrieval task.
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Extended Data Fig. 5 | VQA results on WSI-VQA dataset. a. Open-ended and close-ended statistical results. b. A close-ended question and corresponding answers.  
c. An open-ended question and corresponding answers.
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Extended Data Fig. 6 | Generated Example Reports. The ground truth report is provided by pathologist. The text in red indicates correct predictions, the text in blue 
represents incorrect predictions.
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Extended Data Fig. 7 | Generated Example Reports. The ground truth report is provided by pathologist. The text in red indicates correct predictions, the text in blue 
represents incorrect predictions, and the text in gray is the predicted text not mentioned in the pathologist’s report.
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Extended Data Fig. 8 | Evaluation of Report Quality Based on Organ-Specific 
Analysis. a-c. Performance assessment of generated pathology reports for 
lung cancer, breast cancer, and kidney cancer, respectively. d. Scoring criteria 
for human-based blind evaluation of foundation-model-generated pathology 

reports. The scoring system ranges from 0.0 to 1.0, where 1.0 indicates complete 
accuracy with ground truth, 0.7 represents mostly correct information, 0.3 
indicates presence of core content errors, and 0.0 denotes completely incorrect 
information.
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Extended Data Fig. 9 | The Effectiveness of Expert Knowledge Distillation. 
The figure presents the performance difference between GPFM (with Expert 
Knowledge Distillation, that is, w/ Exp. in figure) and DINOv2 (without Expert 
Knowledge Distillation, that is, w/o Exp. in figure). The horizontal black lines 
indicate the mean AUC. If GPFM outperforms DINOv2, the p-value is also 
reported. a. The balanced accuracy of the models with and without Expert 
Knowledge Distillation. b. The weighted F1 score of the models with and without 

Expert Knowledge Distillation. c. The AUC of the models with and without Expert 
Knowledge Distillation. The centre represent mean and the dashed lines indicate 
the 2.5-th and 97.5-th percentile, respectively. Significance testing was conducted 
using the Wilcoxon signed-rank one-sided test, demonstrating that Expert 
Knowledge Distillation consistently improves performance across the majority 
of tasks, highlighting the effectiveness of this technique in enhancing the GPFM.
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Extended Data Table 1 | pseudocode of the Expert Knowledge Distillation module

The PyTorch-like pseudocode of the Expert Knowledge Distillation module.
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