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Version 0: 

Decision Letter: 

Dear Hao, 

Thank you again for submitting to Nature Biomedical Engineering your manuscript, "Towards A Generalizable Pathology
Foundation Model via Unified Knowledge Distillation". As noted in previous correspondence, the manuscript has been seen
by three experts, whose reports you will find at the end of this message (including the two reports I had already forwarded to
you). 

You will see that the reviewers appreciate the work. However, they express concerns about the degree of support for the
claims, and provide useful suggestions for improvement. We hope that with substantial further work you can address the
criticisms and convince the reviewers of the merits of the study. In particular, we would expect that a revised version of the
manuscript provides systematic evaluations of the pathology foundation models across the full set of tasks as well as
substantial additional external validations, as per the criticisms from Reviewers #2 and #3. 

When you are ready to resubmit your manuscript, please <a href="Link Redacted">upload</a> the revised files, a point-by-
point rebuttal to the comments from all reviewers, the <a
href="https://www.nature.com/authors/policies/ReportingSummary.pdf">reporting summary</a>, and a cover letter that
explains the main improvements included in the revision and responds to any points highlighted in this decision. 

Please follow the following recommendations: 

* Clearly highlight any amendments to the text and figures to help the reviewers and editors find and understand the
changes (yet keep in mind that excessive marking can hinder readability). 

* If you and your co-authors disagree with a criticism, provide the arguments to the reviewer (optionally, indicate the relevant
points in the cover letter). 

* If a criticism or suggestion is not addressed, please indicate so in the rebuttal to the reviewer comments and explain the
reason(s). 

* Consider including responses to any criticisms raised by more than one reviewer at the beginning of the rebuttal, in a
section addressed to all reviewers. 

* The rebuttal should include the reviewer comments in point-by-point format (please note that we provide all reviewers will
the reports as they appear at the end of this message). 

* Provide the rebuttal to the reviewer comments and the cover letter as separate files. 

We expect that you will be able to resubmit the manuscript within 20 weeks of receiving this message. If this is the case, you
will be protected against potential scooping. Otherwise, we will be happy to consider a revised manuscript as long as the
significance of the work is not compromised by work published elsewhere or accepted for publication at Nature Biomedical
Engineering. 

We hope that you will find the referee reports helpful when revising the work. Please do not hesitate to contact me should
you have any questions. 

Best wishes, 



Pep 

__ 
Pep Pàmies 
Chief Editor, <a href="http://www.nature.com/nbme">Nature Biomedical Engineering</a> 

__________ 
Reviewer #1 (Report for the authors (Required)): 

This study establishes a comprehensive benchmark to evaluate the performance of pathology foundation models across 6
clinical types with 39 specific tasks. Then, this study proposes a self-supervised learning approach with a unified knowledge
distillation framework consisting of both expert and self-knowledge distillation with pretraining 190 million images from 86K
H&E WSIs, and introduced a vision foundation model for pathology “GPFM”. 

On the model side, the study evaluated WSI classifier, ROI classifier, survival, retrieval, VQA, and report generation tasks.
Then, this study used the expert models for “expert knowledge distillation”, by performing pretraining which includes mask
image modeling, self-distillation, and expert knowledge distillation. 

The result suggested that GPMF achieved great performance across 29 out of 39 tasks, which is substantially better than the
second-best model UNI. 

Overall I am impressed by the learning technique that this paper proposed. This paper is novel in terms of its methodology
innovation and the comprehensiveness of training data and evaluation tasks. It builds on the similar DINOv2 student-teacher
framework but innovatively lets three existing foundation models (UNI, Phikon, CONCH) to perform alignment and further
guide the training of GPMF. The GPMF uses 33 public large WSI and patch dataset, trained upon existing off-the-shelf
pathology models, and finally achieved decent results across a very comprehensive array of tasks. 

Other than that, my main concern is that the figure panels don't follow the logical flow of the text. For example, I was unable
to find Figure 6b discussion in main result section. Figure 6d also skipped. The other comment is that I hope the author can
expand the technical detail in Methods section 4.1, specifically, further explain this part “To achieve distillation, we use the
student network to encode the global views …”, especially the necessity of this alignment process, for both CLS and PATCH
tokens. 

Minor comments: 
Figure 2c & figure 3d, etc.: The best performed model has the shortest bar which looks quite counter-intuitive to me. Suggest
using box plot rather than using bar plot with error bar, and inverse the y axis (may be that can be better and more intuitive?) 

Figure 2d. Suggest reorder the rows from the low-performance model to best-performance model from top to bottom based
on average ranking. 

Figure 6b: Suggest adding more detail on caption – what data? Also I believe Figure 6b was not discussed in the main result
section. 

Figure 6: Instead of using color to represent each model, consider also using unique symbols (star, asterisk, square, etc.).
Readers may be color-blinded and may use black/white printer. 

Code: 

In Github source code training part: https://github.com/birkhoffkiki/GPFM/blob/master/train_scripts/UBC-OCEAN.sh 

It seems the main.py training code is missing. 

Reviewer #2 (Report for the authors (Required)): 

This is timely, interesting and technically new, but has a few issues 

major issues: 

(1) However, the core claim of the paper regarding generalizability is questionable as out of the 39 tasks, only 7 are external
validation, and for 6 of these, the model was still trained on the same cohort, with only a subset held out for testing. The only
truly external validation was CPTAC-LUAD, but even here, CPTAC was part of the model's pretraining and I did not find
Information on whether they excluded the LUAD slides in pretraining. Additionally, 11 of the 39 tasks are TCGA-based, and
the model was heavily trained on TCGA images, and one expert model used (Phikon) was trained exclusively on TCGA
data. This represents data leakage and is a major red flag. 



(2) also, please make the codes and data accessible now and not just at acceptance 

minor issues: 

- there are inconsistencies in the formatting and organization of affiliations and other information 
- typos such as missing punctuation and inconsistent spacing 
- some sections redundantly restate similar content ... this creates unnecessary length 
- poor wrtiing with complex and lengthy sentences make the text difficult to follow at times 

Reviewer #3 (Report for the authors (Required)): 

The authors evaluated the generalizability of foundation models in computational pathology. They found that while existing
foundation models excel in specific areas, their performance varies across a broader range of applications. The authors
propose a knowledge distillation framework combining expert knowledge distillation, which integrates insights from multiple
models, and self-knowledge distillation, which enhances image representation through local-global alignment. Using this
framework, they developed the Generalizable Pathology Foundation Model (GPFM) and evaluated its performance on tasks
including cancer classification and pathology report generation. Results show that GPFM had an average rank of 1.36
among the models they compared with. 

General comments: 
1. The criteria for task selection are unclear. For example, The Cancer Genome Atlas (TCGA) datasets they used can
support approximately 20 whole-slide image classification tasks and another 20 survival prediction tasks, but only a subset
was selected and presented. Different subset selections could alter comparative results. 

2. Related to the previous point, the authors did not stratify the pathology visual question answering, report generation, and
image retrieval tasks by cancer type in their current analysis. If these results were stratified by cancer type, would the results
change? 

3. Some of the selected foundation models were not fully evaluated. For example, the PLIP feature can be used for whole-
slide pathology image classification and survival analyses. In addition, CONCH, Ctranspath, and UNI features can be used
for survival analyses. However, these foundation models were not evaluated for these tasks. 

4. Several new foundation models showed better performance in the tasks presented in the manuscript. These models
include GigaPath, CHIEF, and Virchow V2. However, these models were not included in the current analyses. 

5. The GPFM model for survival prediction showed substantial performance decay when applied to the publicly available
Clinical Proteomic Tumor Analysis Consortium (CPTAC) external validation dataset. The authors could discuss the potential
implications of this finding. 

6. Glioblastoma (GBM) and low-grade glioma (LGG) have distinct pathology imaging profiles and very different prognoses.
They should be separated in the survival outcome prediction. The pooled analyses shown in the current manuscript do not
have clinical significance. 

7. The pathology visual question answering dataset appears to be very noisy, and the meaning of the labels is unclear. For
example, what does “polycystic disease infant” mean? A more precise term might be “polycystic kidney disease of the
infant.” Similarly, the example of “What is present? Answer: cardiovascular” is also unclear. A better description could be,
“What is the tissue type shown in this pathology image? Answer: Blood vessels.” 

8. The BLEU scores presented in the pathology report generation task are low (<0.4). In addition, Phikon has performed
better than the method proposed by the authors across all evaluation metrics. The authors could further investigate the
performance of Phikon in non-TCGA datasets for this task. 

9. In addition to the BLEU scores and related metrics, blinded human-based evaluation of the generated pathology reports
will provide better insights into the quality of the generated texts. 

10. It is interesting to see that DINOv2 without expert knowledge distillation performs much better than the proposed
methods in the BreakHis dataset. The authors could discuss the potential reasons behind this. 

11. The authors did not compute the p-values for the tasks where GPFM performs worse. Adding these statistical analyses
will help readers better understand the differences between GPFM and the better-performing models in these instances. 

Additional comment: 
1. The figure legend of Figure 6d is incomplete. 

Code: 



The code provides a README file with sufficient instructions for installing and running the application. 

Version 1: 

Decision Letter: 

Dear Professor Chen, 

Thank you for your revised manuscript, "Towards A Generalizable Pathology Foundation Model via Unified Knowledge
Distillation". Having consulted with two of the original reviewers (whose comments you will find at the end of this message), I
am pleased to write that we shall be happy to publish the manuscript in Nature Biomedical Engineering. 

We will be performing detailed checks on your manuscript, and in due course will send you a checklist detailing our editorial
and formatting requirements. You will need to follow these instructions before you upload the final manuscript files. 

Please do not hesitate to contact me if you have any questions. 

Best wishes, 

Barbara Cheifet 
Editor 
Nature Biomedical Engineering 

__________ 
Reviewer #1 (Report for the authors (Required)): 

The revised manuscript shows substantial improvement over the initial submission. It addresses my previous concerns
regarding the figure order and provides greater clarity on the methodological details. The updated figure also enhances
readability. Reviewing the responses to other reviewers’ comments, I believe the authors have adequately addressed the
raised issues. The proposed method is novel, and the authors have conducted various of additional experiments to
strengthen their findings. 

Major technical criticisms: 
None. 

Minor technical criticisms or questions: 
None. 

Missing or unclear details about statistics, protocols or materials: 
N/A 

Stylistic issues or recommendations: 
I recommend that the authors ensure each figure caption is self-contained. For example, in Fig. 1, I recommend use
“foundation model” instead of “FM” when first appear. 

Reviewer #1 (Remarks on code availability): 

The code is well-documented and runs smoothly. However, I have one suggestion: consider including a requirements.txt file
for pip installation or a Conda environment YAML file to facilitate reproducibility. 

Reviewer #2 (Report for the authors (Required)): 

All comments have been addressed. Thank you. 

Reviewer #3 (Report for the authors (Required)): 

The authors have addressed the comments raised previously. Thank you. 

Reviewer #3 (Remarks on code availability): 

The code provides a README file with instructions for running the application. 



Version 2: 

Decision Letter: 

Dear Professor Chen, 

I am happy to inform you that your manuscript, "A generalizable pathology foundation model using a unified knowledge
distillation pretraining framework", has now been accepted for publication in Nature Biomedical Engineering. 

Over the next few weeks, the figures will be checked for production quality, the text edited to ensure that it conforms to house
style, and the manuscript typeset. 

Our Articles are published about 40 days after the acceptance date (we recommend that you inform your institutional press
office of this timeframe), and you will be notified of the actual publication date a few days in advance. Articles can be
published any working day of the week, and are pushed live shortly after 10 am London time. 

Publishing agreement. You will be asked to digitally sign a publishing agreement (grant of rights). After the signed
publishing agreement has been received, the proofs of the article will be sent to you for review. If you have any queries
during the production process, or you cannot meet the requested deadline for returning the proofs, please contact
rjsproduction@springernature.com. 

Nature Biomedical Engineering is a Transformative Journal. Authors may publish their research with us through the
traditional subscription access route, or make their paper immediately open access through payment of an article-processing
charge. More <a href="https://www.springernature.com/gp/open-research/transformative-journals">information about
publication options</a> is available. 

You may need to take specific actions to <a href="https://www.springernature.com/gp/open-
research/funding/policy-compliance-faqs">comply</a> with funder and institutional open-access mandates. If the
work described in the accepted manuscript is supported by a funder that requires immediate open access (as outlined, for
example, by <a href="https://www.springernature.com/gp/open-research/plan-s-compliance">Plan S</a>) and your
manuscript was originally submitted on or after January 1st 2021, then you should select the gold OA route. Authors
selecting subscription publication will need to accept our standard licensing terms (including our <a
href="https://www.springernature.com/gp/open-research/policies/journal-policies">self-archiving policies</a>), and these
will supersede any other terms that the author or any third party may assert apply to any version of the manuscript. 

Acceptance of your manuscript is conditional on agreement, by all authors, with both our <a
href="http://www.nature.com/authors/policies/embargo.html">media embargo</a> and <a
href="http://www.nature.com/authors/policies/confidentiality.html">confidentiality and pre-publicity</a> policies. In particular,
you may arrange your own publicity of the Article (for instance, through your institutional press office), as long as you ensure
that journalists strictly adhere to the media embargo. 

To assist you in disseminating the work, as soon as the Article is published you will be able to take advantage of the
Springer Nature <a href="https://www.springernature.com/gp/researchers/sharedit">SharedIt</a> initiative to <a
href="http://authors.springernature.com/share">generate a unique shareable link to the Article</a> that will allow anyone
(with or without a subscription) to read it. Recipients of the link who are subscribers will also be able to download and print
the PDF. 

Thank you for having submitted this work to Nature Biomedical Engineering. 

Best wishes, 

Barbara Cheifet 
Editor 
Nature Biomedical Engineering
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Response Letter 
 

Dear Editor and Reviewers, 
We sincerely appreciate your valuable feedback and constructive comments, which 
have greatly contributed to improving the quality of our work. We have carefully ad-
dressed each of the points raised and provided detailed responses to all comments. For 
your convenience, we have organized our responses by each reviewer: 

• Reviewer #1 
• Reviewer #2 
• Reviewer #3 

Please feel free to navigate to the respective sections using the links above. Should you 
require any additional information or clarification, we would be happy to provide it. 
Once again, we thank you for your time and effort in reviewing our manuscript. 
Best regards, 
Hao Chen 
  



Reviewer #1: 
Overall Comments: This study establishes a comprehensive benchmark to evaluate 
the performance of pathology foundation models across 6 clinical types with 39 specific 
tasks. Then, this study proposes a self-supervised learning approach with a unified 
knowledge distillation framework consisting of both expert and self-knowledge distil-
lation with pretraining 190 million images from 86K H&E WSIs, and introduced a vi-
sion foundation model for pathology “GPFM”. 
On the model side, the study evaluated WSI classifier, ROI classifier, survival, retrieval, 
VQA, and report generation tasks. Then, this study used the expert models for “expert 
knowledge distillation”, by performing pretraining which includes mask image model-
ing, self-distillation, and expert knowledge distillation. 
The result suggested that GPMF achieved great performance across 29 out of 39 tasks, 
which is substantially better than the second-best model UNI. 
Overall I am impressed by the learning technique that this paper proposed. This paper 
is novel in terms of its methodology innovation and the comprehensiveness of training 
data and evaluation tasks. It builds on the similar DINOv2 student-teacher framework 
but innovatively lets three existing foundation models (UNI, Phikon, CONCH) to per-
form alignment and further guide the training of GPMF. The GPMF uses 33 public large 
WSI and patch dataset, trained upon existing off-the-shelf pathology models, and fi-
nally achieved decent results across a very comprehensive array of tasks.  
Response:  
We sincerely appreciate your thorough review and positive feedback on our study. We 
are glad to hear that you found our methodology innovative and the comprehensive 
evaluation of our model, GPFM. We will address your comments and suggestions one 
by one. 
 
Comment 1: My main concern is that the figure panels don't follow the logical flow of 
the text. For example, I was unable to find Figure 6b discussion in main result section. 
Figure 6d also skipped.  
Response: 
Thank you for pointing out the potential readability problem. We have carefully revised 
the manuscript to ensure that all figure panels, including Figure 6b and Figure 6d, are 
now discussed in the main results section. These changes ensure that the logical flow 
between the text and figures is now consistent and improves the overall readability of 
the manuscript. It is worth noting that to improve the readability of the manuscript, we 
replot Figure 6. The previous Figure 6 and revised Figure 6 are shown below. 



  

Previous Figure 6 (left) and reivesed Figure 6 (right). 
The revised figures can be found in Section 2.6 on page 12 in the manuscript. 
For the figure 6, the discussion in the main section is listed below: 
Fig 6a: 
The experimental results (Fig. 6a, Extended Data Table A37) show that the GPFM 
model achieved the second-best Top-1 accuracy with a value of 0.906 (-1.9%, Prov-
Gigapath). However, GPFM outperforms other models in terms of Top-3 and Top-5 
accuracy, achieving values of 0.993 (+0.5%, Prov-Gigapath) and 0.995 (+0.2%, Prov-
Gigapath), respectively. 
Fig 6b: 
To further explore the clustering effect and feature representation ability, we utilized t-
Distributed Stochastic Neighbor Embedding (t-SNE) [50] to project the features ex-
tracted by GPFM into a 2D embedding space. The categories are well clustered, further 
illustrating that the features are highly discriminative (Fig. 6b). 
Fig 6c: 
For the patch-level VQA task, our model achieved the second-best performance, with 
results only slightly lower than those of CONCH (Fig. 6c, Extended Data Table A38). 
It is important to note that CONCH is a vision-language FM trained on millions of 
image-text pairs, which inherently provides it with an advantage in VQA tasks. 
Fig 6d and Fig 6e: 
Despite this, our results highlight the substantial potential of our approach compared 
to other pure vision FMs. To further illustrate the capabilities of our model, we visual-
ized the query images, questions, and answers generated by different FMs (Fig. 6d and 
6e). 
Fig 6f: 
The experimental results demonstrate that Phikon achieved the best performance 
across all six metrics, while GPFM achieved comparable performance and ranked as 
the second-best model on both tasks (Fig. 6f, Extended Data Table A40 and A42). 



 
Comment 2: The other comment is that I hope the author can expand the technical 
detail in Methods section 4.1, specifically, further explain this part “To achieve distil-
lation, we use the student network to encode the global views …”, especially the ne-
cessity of this alignment process, for both CLS and PATCH tokens. 
Response: 
Thank you for the suggestions. To avoid potential confusion of our distillation method, 
we add more details in the revised manuscript in section 4.1. The previous version and 
the revised text are listed below. 
 
Previous version: “To achieve distillation, we use the student network to encode the 
global views u and v and extract the [CLS] and [PATCH] tokens. Additionally, we em-
ploy the off-the-shelf foundation models (UNI, Phikon, CONCH) to obtain their re-
spective [CLS] and [PATCH] tokens. For aligning the class tokens, we utilize cosine 
similarity. As for the patch token alignment, we employ both cosine similarity and 
smooth L1 distance. 
Revised version: 
“To maximize the generalizability of the pretrained model, it is crucial to balance the 
performance and diversity of expert models. We evaluated several existing models 
across six different tasks, selecting those that excelled in classification (UNI), survival 
analysis (Phikon), and visual question answering (CONCH) as expert models (see Fig. 
1c). The [CLS] token, which represents the overall information of a patch for down-
stream tasks, serves as a critical component in our approach. If the [CLS] token of our 
model aligns well with those of the expert models, it indicates that our model can effec-
tively assimilate the knowledge from selected experts. Similarly, the [PATCH] token 
also contains rich information. For example, some methods use mean pooling to per-
form downstream tasks [76]. Therefore, aligning the [PATCH] token can further im-
prove the effect of knowledge transfer. To achieve above alignments, we use the student 
network to encode the global views u and v and extract the [CLS] and [PATCH] tokens. 
Additionally, we employ the adopted experts to obtain their [CLS] and [PATCH] tokens, 
respectively.” 
Comment 3: Figure 2c & figure 3d, etc.: The best performed model has the shortest 
bar which looks quite counter-intuitive to me. Suggest using box plot rather than using 
bar plot with error bar, and inverse the y axis (may be that can be better and more 
intuitive?) 
Response:  
Thank you for your suggestions. To make it clearer, we used box plot and inverse the y 
axis. The previous figures and revised figures are shown in the following lines. 
 
 
 
 
 
 



Fig 2: 

  
The previous Fig. 2 (left) and the revised Fig. 2 (right) in the manuscript. The bar plot 
Fig. 2c is replaced with a box plot. The revised figure can be found at Section 2, Page 

5. 
 

Fig 3: 

  
The previous Fig. 3 (left) and the revised Fig. 3 (right) in the manuscript. The bar plot 
Fig. 3d is replaced with a box plot Fig. 3a. For the revised figure, please refer to Sec-

tion 2.1, Page 6. 
 
 
 
 
 
 
 
 
 
 



Fig 4: 

 
The previous Fig. 4 (left) and the revised Fig. 4 (right) in the manuscript. The bar plot 
Fig. 4a is replaced with a box plot Fig. 4a. The revised figure 4 can be found at Sec-

tion 2.2, Page 7. 
 

Fig 5: 

  
The previous Fig. 5 (left) and the revised Fig. 5 (right) in the manuscript. The bar plot 
Fig. 5a is replaced with a box plot Fig. 5a. The revised figure 5 can be found in Sec-

tion 2.3, Page 9. 
 
 
  



Comment 4: Figure 2d. Suggest reorder the rows from the low-performance model to 
best-performance model from top to bottom based on average ranking. 
Response: Thank you for your suggestions. That’s a good suggestion which is much 
clearer. The revised Figure 2 is shown below. It is worth noting that we add another 33 
tasks, to make it clearer. We split the table into 3 parts, internal WSI classification tasks 
(Fig. 2f), external tasks (Fig. 2g), and other tasks (Fig. 2e). The order is based on their 
average rank. The revised figure can be found at Section 2, Page 5. 

 
The Revised Fig. 2. We reordered the models based on their average ranking score. 

 
Comment 5: Figure 6b: Suggest adding more detail on caption – what data? Also I 
believe Figure 6b was not discussed in the main result section. 
Response:  
Thank you for your suggestions. The data used for visualization is CRC-100K, which 
is also used for the tissue retrieval task (Figure 6a). To avoid any potential confusion, 
we add more details in the caption. The revised caption is shown in below lines: 
Previous version: 
“b. The distribution of features extracted by GPFM. For each class, 100 samples from 
the test set were used, and a total of 900 samples were subjected to t-SNE dimension-
ality reduction to 2D.” 
Revised version: 
“b. Distribution of features extracted by GPFM on the CRC-100K dataset. For each 



class, 100 samples from the test set are used, and a total of 900 samples are reduced to 
2D embeddings using t-SNE. Different classes are represented by different colors in the 
2D t-SNE plot.” 
 
Regarding your second question, we appreciate you pointing this out and helping us 
improve the quality of this paper. To make it more complete, we discussed Figure 6b in 
the main result section as shown in the following lines: 
“To further explore the clustering effect and feature representation ability, we utilized 
t-Distributed Stochastic Neighbor Embedding (t-SNE) [50] to project the features ex-
tracted by GPFM into a 2D embedding space. The categories are well clustered, further 
illustrating that the features are highly discriminative (Fig. 6b).” 
 
For the above modifications, we have updated them in the manuscript in Section 2.4, 
Page 10. 
 
Comment 6: Figure 6: Instead of using color to represent each model, consider also 
using unique symbols (star, asterisk, square, etc.). Readers may be color-blinded and 
may use black/white printer. 
Response: We are grateful for the suggestions. To make the manuscript easier to read 
for all people, we adopted unique symbols to represent different models. The modified 
figure is as below. The revised figures can be found in Section 2.6 on page 12 in the 
manuscript. 

  

Previous Figure 6 (left) and reivesed Figure 6 (right). 
Comment 7: In Github source code training part:  
https://github.com/birkhoffkiki/GPFM/blob/master/train_scripts/UBC-OCEAN.sh 
It seems the main.py training code is missing. 
Response:  
Thanks for your reminder. We uploaded main.py. We are actively maintaining this 



project and continuously updating it to address feedback from the research community. 
If you encounter any further issues or have additional suggestions, please feel free to 
reach out. We appreciate your valuable feedback!  



Reviewer #2: 

 
Overall comment: This is timely, interesting and technically new, but has a few issues. 
Response:  
Thank you for your valuable feedback. We appreciate your recognition of the timeliness 
and technical novelty of our work. We are committed to addressing the issues you've 
identified to improve the manuscript. The response to your comments is listed below 
one by one. Thank you again for your insights! 
 
Comment 1: However, the core claim of the paper regarding generalizability is ques-
tionable as out of the 39 tasks, only 7 are external validation, and for 6 of these, the 
model was still trained on the same cohort, with only a subset held out for testing. The 
only truly external validation was CPTAC-LUAD, but even here, CPTAC was part of 
the model's pretraining and I did not find Information on whether they excluded the 
LUAD slides in pretraining. Additionally, 11 of the 39 tasks are TCGA-based, and the 
model was heavily trained on TCGA images, and one expert model used (Phikon) was 
trained exclusively on TCGA data. This represents data leakage and is a major red flag. 
Response:  
Thank you for your insightful comment. For your first concern, we acknowledge that 
the initial number of external validation tasks was limited. To address this, we have 
expanded our evaluation to include an additional 33 tasks (28 of which are non-TCGA), 
bringing the total number of tasks to 72. Among these, 20 are external validation tasks, 
and 13 are internal tasks. These additions significantly strengthen the generalizability 
assessment of our model. Regarding the concern about data leakage, particularly with 
the use of the Phikon model, we have taken care to ensure that the newly added tasks 
do not overlap with the pretraining data of GPFM or the expert models (CONCH, UNI, 
Phikon). In Table 1 (below), the newly added tasks are highlighted in red, and under-
lined entries indicate datasets that were not used in the pretraining of GPFM or any of 
the expert models. This ensures a rigorous evaluation without data leakage. 

Table 1. Evaluated extra downstream tasks. 

Task Name 
Internal data  
(Data Number) 

External Data 
(Data Number) 

NSCLC Subtyping 
TCGA-NSCLC 
(1053 WSIs) 

CENTER-1-NSCLC 
(210 WSIs) 

Metastatic Detection (Lung Cancer) 
CENTER-1-LMD2 
(1198 WSIs) 

CENTER-2-LMD2 
(530 WSIs) 

Primary Site Prediction (Lung Can-
cer) 

CENTER-1-LMD6 
(1198 WSIs) 

CENTER-2-LMD6 
(530 WSIs) 



RCC Subtyping 
TCGA-RCC 
(937 WSIs) 

CENTER-3-RCC 
(88 slides) 

ILC & IDC classification 
TCGA-BRCA 
(985 WSIs) 

CENTER-3-LD 
(383 WSIs) 

Breast Carcinoma Subtyping 
BRACS 
(545 WSIs) 

CENTER-3-BRCA 
(467 WSIs) 

IDH Mutation Prediction in Glioma(1) 
TCGA-GBMLGG-IDH1 
(979 WSIs) 

EBRAIN-IDH1 
(852) 

Ovarian Cancer Subtyping 
UBC-OCEAN 
(527 WSIs) 

CENTER-3-Ovary 
(370 WSIs) 

Brain Tumor Subtyping(1) 
TCGA-GBMLGG-Subtyp-
ing 
(1276 WSIs) 

EBRAIN-Subtyping 
(732) 

Lesion Grade Classification (Colon 
Cancer) 

IMP-CRS 
(5332 WSIs) 

CENTER-3-Colon-WSI 
(297 WSIs) 

Primary Site Prediction (Head & Neck 
Cancer) 

HANCOCK 
(708 WSIs) 

- 

T stage Prediction (Head & Neck Can-
cer) 

HANCOCK 
(705 WSIs) 

- 

Lauren Subtyping (Gastric Cancer) 
TCGA-STAD 
(390 WSIs) 

o CENTER-5-Lau-
ren 

(141 WSIs) 
o CENTER-4-Lau-

ren 
(319 WSIs) 
 

Vascular Invasion Detection (Gastric 
Cancer) 

CENTER-1-Vascular 
(396 WSIs) 

o CENTER-5-Vas-
cular (230 WSIs) 

o CENTER-4-Vas-
cular 

(319 WSIs) 
 

Perineural Invasion Detection (Gas-
tric Cancer) 

CENTER-1-Perineural 
(397 WSIs) 

o CENTER-5-Peri-
neural (232 WSIs) 

o CENTER-4- Peri-
neural 

(319 WSIs) 



 

Survival Analysis (Head & Neck Can-
cer) 

TCGA-HNSC 
(443 cases) 

HANCOCK 
(749 cases) 

Survival Analysis (Brain Cancer)(2) 

o TCGA-GBM  
(372 cases) 

o TCGA-LGG 
(462 cases) 

 

- 

Tumor infiltrating lymphocyte (TIL) 
classification 

Pancancer-TIL 
(304,097 patches) 

CENTER-3-TIL 
(18,492 patches) 

Colon Tissue Classification 
Chaoyang 
(6,160 patches) 

CENTER-3-Colon 
(21,068 patches) 

Gastic Tissue Classification 
GasHisDB 
(13,124 patches) 

CENTER-3-GC 
(2,537 patches) 

VQA for WSI 
WSI-VQA 
(977 WSIs) 

- 

Report Generation (Gastric Cancer) 
PatchGastricADC22 
(991 WSIs) 

- 

(1) In the previous manuscript, this task only performed internal training and testing on EBRAIN dataset. 
In the revised manuscript, we use the TCGA-GBMLGG as internal data and use the EBRAIN as the 
external data. 

(2) In the previous manuscript, this task is performed on TCGA-GBMLGG data. However, the comment 
6 raised by reviewer #3 suggests that GBM and LGG should predict separately due to distinct pa-
thology imaging profiles and very different prognoses. Therefore, we reformulate this task. 

The ranking scores of various foundation models across the expanded set of tasks are 
presented in the accompanying Figure 1. As shown, GPFM achieves the best average 
performance on both the 52 internal tasks and the 20 external validation tasks (see more 
results at the end of this comment). This robust performance across a diverse set of 
tasks, including 28 non-TCGA and 20 external validation tasks, underscores the gener-
alizability of GPFM and the effectiveness of our proposed expert knowledge distillation 
pretraining strategy. We believe these additions and clarifications address the reviewer's 
concerns and further validate the generalizability and robustness of our model. 



 
Figure 1. The ranking score of foundation models across 72 tasks. The revised figure 

is presented in Section 2, Page 5 in the manuscript. 
 
Additional Experimental Results: 

 



 

 



 
 



 



 
 
Comment 2: also, please make the codes and data accessible now and not just at ac-
ceptance. 
Response:  
Thank you for your reminder regarding code and data accessibility. We are committed 
to promoting transparency and reproducibility in our work. To this end, we have made 
the following resources publicly available at https://github.com/birkhoffkiki/GPFM: 

1. Public Data and Splits: All publicly available datasets and the corresponding 
splits used for experiments are provided (see below Table 2). 

2. Pretraining Code: The code for pretraining the GPFM model is included. 
3. Downstream Task Code: The code for evaluating the model on downstream 

tasks is also provided. 
Regarding the data from medical centers, these datasets are not publicly available due 
to patient privacy obligations, institutional review board requirements, and data use 
agreements. However, researchers interested in accessing de-identified data may submit 
a reasonable request directly to corresponding authors, subject to obtaining the 



necessary ethical approvals and complying with institutional policies. We hope this ad-
dresses your concerns and facilitates further research in the community. Please let us 
know if additional clarification or resources are needed. 
 

Table 2. The link of public data used in this work. 

 
 
Comment 3: there are inconsistencies in the formatting and organization of affiliations 
and other information. 
Response:  
Thank you for your reminder. We have now standardized the formatting to ensure con-
sistency throughout the manuscript. Specifically, we have applied the following rules: 
1. University Affiliations: 
Format: Department, University, City, Country 



Example: Department of Computer Science and Engineering, The Hong Kong Univer-
sity of Science and Technology, Hong Kong SAR, China. 
2. Hospital Affiliations: 
Format: Department, Hospital, Affiliated University, City, Country 
Example: Department of Pathology, Nanfang Hospital and School of Basic Medical 
Sciences, Southern Medical University, Guangzhou, China. 
3. Laboratory Affiliations: 
Format: Laboratory, City, Country 
Example: Shanghai Artificial Intelligence Laboratory, Shanghai, China 
 
We have carefully reviewed and updated all affiliations in the manuscript to adhere to 
these formats. We hope this revision resolves the issue and improves the overall reada-
bility and professionalism of the paper.  

 
 



Comment 4: typos such as missing punctuation and inconsistent spacing 
Response:  
Thank you for your valuable feedback regarding the typos, missing punctuation, and 
inconsistent spacing in our manuscript. We have carefully reviewed the document and 
made the necessary corrections to improve clarity and consistency. Your attention to 
detail is greatly appreciated, and we believe these changes enhance the overall quality 
of the work. To make the response clear, we provide some examples listed below: 
 
Example for missing punctuation: 
Previous: “Across the three external validation datasets, the GPFM achieved the best 
average rank of 1.5, while the second best performing model, UNI, obtained an average 
rank of 2.3, illustrating the generalization capability of GPFM.” 
Revised: “In contrast, by integrating knowledge from all adopted expert models, the 
unified knowledge distillation enables GPFM to surpass the performance of individual 
models, achieving a significantly lower average ranking score of 1.88, outperforming 
the next-best model by more than one point. This underscores GPFM's strength as a 
highly generalizable FM.” (Please note that we add more tasks, therefore, we rewrite 
text related to the task and results.) 
 
Example for inconsistent spacing: 
Previous: “This dataset was adopted for the subtyping of NSCLC using lung squamous 
cell carcinoma (LSCC) and LUAD WSIs sourced from the CPTAC data portal[79].”  
Revised: “To perform subtyping of non-small cell lung cancer (NSCLC), we utilized 
data from the TCGA [68], CPTAC [69], and Center-1.” (Please note that we adopted 
WSIs from medical Center-1 to conduct external validation. To reduce the redundancy, 
we introduce NSCLC related data in one paragraph.) 
 
The previous manuscript with marks is included in the attached files, which indicates 
the modifications. 
 
Comment 5: some sections redundantly restate similar content ... this creates unneces-
sary length 
Response: 
We are grateful for the suggestions. We added 33 new tasks and rewrote several parts 
to avoid redundancy. We updated the manuscript based on your suggestion, and some 
examples are listed below: 
 
Examples: 
Ø In section 2.3, Previous: “The performance of WSI classification is influenced by 

both the feature extractor and the MIL method. In the WSI classification tasks, we 
use the ABMIL to evaluate whether the features extracted by the foundation models 
are discriminative. In Region of Interest (ROI) classification tasks, we can directly 
evaluate the feature representation abilities of the foundation models without using 
any MIL method.” 



Revised: “The performance of WSI classification is influenced by both the feature 
extractor (i.e., FM) and the MIL method. Unlike WSI classification, Region-of-In-
terest (ROI) classification tasks allow for a direct assessment of the FMs' feature 
representation capabilities, independent of MIL methods.” 

Ø Removed: “The comparison of various foundation models is illustrated in Figure 
5.” 

Ø In section 2.4, Removed: “The experimental results for ROI retrieval are depicted 
in Fig. 6a, and the detailed results can be found in Extended Data Table A33, show-
casing the Top-1, Top-3, and Top-5 accuracy achieved by different foundation mod-
els.” 

Ø In section 2.4, move the dataset introduction into section 4. 
Ø In section 2.5, Removed: “The performance of different foundation models on 

open-ended and close-ended VQA problems is presented in Figure 6, and detailed 
results can be found in Extended Data Table A34.”  

Ø In section 2.6, Removed: “The performance of each foundation model in report 
generation is presented in Figure 7 and the detailed results are reported in Extended 
Data Table A35.” 

Ø In section 2.7, Removed: “The experimental results are presented in Figure 8. More 
details can be found in Extended Data Table A36.” 

Ø In section 4, we removed some sentences that have been mentioned in section 2 to 
reduce redundancy. For example, in section 4.2, we removed “WSI classification 
holds significant importance in pathology diagnosis. It plays a crucial role in ac-
curately analyzing and interpreting WSI, enabling pathologists to make informed 
diagnostic decisions.”. 

Ø In section 4, we removed the redundant description of survival analysis data and 
used a table to show the details of data. 

 
The previous manuscript with marks is included in the attached files, which indicates 
the modifications. 
 
Comment 6: poor writing with complex and lengthy sentences make the text difficult 
to follow at times 
Response:  
Thank you for your valuable feedback regarding the writing style of our manuscript. 
We are sorry for the issues caused by complex and lengthy sentences, which made the 
text difficult to follow. In response to your comment, we have thoroughly revised the 
manuscript to improve clarity and readability. Specifically, we have: 

1. Simplified Sentence Structures: Broken down lengthy and complex sen-
tences into shorter, more concise statements to enhance readability. 

2. Improved Flow: Reorganized paragraphs to ensure a logical and smooth pro-
gression of ideas. 

3. Removed Redundancies: Eliminated unnecessary words and phrases to make 
the text more direct and accessible. 



Below, we provide some examples of specific modifications made to address these is-
sues: 
 
In section 1: 
Previous: “The ability of GPFM to consistently perform well across a diverse type of 
clinical tasks highlights the benefits of leveraging knowledge distillation to combine 
the strengths of expert models, ultimately leading to more robust and versatile founda-
tion models for supporting clinicians and improving patient care.” 
Revised: “The consistent performance of GPFM across a diverse range of clinical 
tasks underscores the advantages of employing knowledge distillation to integrate the 
strengths of specialized expert models. This approach facilitates the development of 
more robust and versatile foundation models (FMs), thereby enhancing their utility in 
supporting clinical decision-making and advancing patient care outcomes.” 
Please refer to Page 4 in the manuscript. 
 
In section 2.2: 
Previous: “In the context of clinical trials for oncology, survival analysis is com-
monly employed, with the time to an event, such as death or disease progression, 
serving as the primary outcome under investigation [51–54].” 
Revision: We removed this sentence. 
 
In section 2.7: 
Previous: “Not only did the individual task performances improve significantly, but 
the average performance also exhibited enhancement, with notable improvements in all 
three metrics.” 
Revised: “The experimental results demonstrated significant improvements not only in 
the performance of individual tasks but also in the overall average performance, with 
substantial enhancements observed across all three evaluation metrics.” 
Please refer to Page 13 in the manuscript. 
 
In section 3: 
Previous: “To further maximize the diversity of data used for pretraining, we gathered 
190 million images sourced from 47 sources, spanning 34 major tissue types. This rich 
dataset, combined with our advanced pretraining methodology, empowers GPFM to 
surpass current foundation models in performance across six major categories (WSI 
classification, survival analysis, ROI classification, image retrieval, VQA, and report 
generation) of CPath tasks, comprising a total of 39 specific tasks.” 
Revised: “To further maximize the diversity of data used for pretraining, we gathered 
190 million images sourced from 56 sources, spanning 34 major tissue types. This rich 
dataset, combined with our advanced pretraining methodology, empowers GPFM to 
surpass current FMs in performance across 72 CPath tasks.” 
Please refer to Page 13 in the manuscript. 
 
In section 4.1: 



Previous: “It is important to note that, for all images used in the downstream tasks, the 
feature extraction operations were performed on images resized to 224×224, unless 
specified otherwise.” 
Revised: “For all downstream tasks, it should be emphasized that feature extraction 
was consistently performed on images resized to 224×224 resolution, except where ex-
plicitly stated otherwise in the experimental protocol.” 
Please refer to Page 15 in the manuscript. 
 
In section 4.2: 
Previous: “Our experiments encompass 12 pathology WSI classification tasks, includ-
ing (1) breast cancer metastasis detection, (2) coarse-grained breast carcinoma subtyp-
ing, (3) fine-grained breast carcinoma subtyping, (4) lobular \& ductal carcinoma sub-
typing, (5) ovarian cancer subtyping, (6) renal cell carcinoma (RCC) subtyping based 
on TCGA, (7) non-small cell lung cancer subtyping based on TCGA, (8) non-small cell 
lung cancer subtyping based on CPTAC, (9) prostate cancer grade assessment, (10) 
TP53 mutation prediction on LUAD (TCGA), (11) Brain tumor subtyping, and (12) 
glioma IDH1 mutation prediction. ” 
Revised: “To evaluate the performance of the MIL model, we assess the balanced ac-
curacy, weighted F1 score, and AUC, which consider the class imbalance present in 
the dataset. Our experiments encompass 36 pathology WSI classification tasks, in-
cluding 20 internal and 16 external validation datasets.” 
Please refer to Page 16 in the manuscript.  
 
We believe these revisions significantly improve the overall clarity and comprehen-
sion of the manuscript. We appreciate your constructive feedback and hope that the 
revised version meets your expectations. Please let us know if further improvements 
are needed. 

  



Reviewer #3: 
 
The authors evaluated the generalizability of foundation models in computational pa-
thology. They found that while existing foundation models excel in specific areas, their 
performance varies across a broader range of applications. The authors propose a 
knowledge distillation framework combining expert knowledge distillation, which in-
tegrates insights from multiple models, and self-knowledge distillation, which enhances 
image representation through local-global alignment. Using this framework, they de-
veloped the Generalizable Pathology Foundation Model (GPFM) and evaluated its per-
formance on tasks including cancer classification and pathology report generation. Re-
sults show that GPFM had an average rank of 1.36 among the models they compared 
with. 
Response:  
Thank you for sharing your insights about our model GPFM. Our team has worked 
diligently to develop a framework that not only combines expert knowledge distillation 
but also leverages self-knowledge distillation to create a more robust and adaptable 
model. We believe this work represents an important step forward in making AI tech-
nologies more reliable and applicable across different pathological contexts. Your com-
ments are really helpful for improving the quality of this manuscript, we responded to 
your comments one by one in below.  
 
Comment 1. The criteria for task selection are unclear. For example, The Cancer Ge-
nome Atlas (TCGA) datasets they used can support approximately 20 whole-slide im-
age classification tasks and another 20 survival prediction tasks, but only a subset was 
selected and presented. Different subset selections could alter comparative results. 
Response:  
Thank you for your comment. We appreciate the opportunity to clarify the task selection 
process for the TCGA datasets. For the TCGA-related tasks, we followed the tasks com-
monly used in previous foundation models (UNI [1] and Phikon [2]) and our previous 
works [3][4]. The selection criteria were based on clinical relevance, dataset size, and 
diversity of cancer types to ensure a robust evaluation of foundation models. 
We acknowledge the importance of extensive task validation to verify the effectiveness 
of GPFM. Based on your comments and those of Reviewer #2, we have added an addi-
tional 33 tasks (28 of which are non-TCGA), bringing the total number of tasks to 72. 
These new tasks can provide broader coverage of cancer types and to address potential 
limitations in the original task set. Among these, 20 are external validation tasks, and 
13 are internal tasks, ensuring a rigorous evaluation of GPFM's generalizability and 
robustness. The new tasks are detailed in the following table. 

Task Name 
Internal data  
(Data Number) 

External Data 
(Data Number) 



NSCLC Subtyping 
TCGA-NSCLC 
(1053 WSIs) 

CENTER-1-NSCLC 
(210 WSIs) 

Metastatic Detection (Lung Cancer) 
CENTER-1-LMD2 
(1198 WSIs) 

CENTER-2-LMD2 
(530 WSIs) 

Primary Site Prediction (Lung Can-
cer) 

CENTER-1-LMD6 
(1198 WSIs) 

CENTER-2-LMD6 
(530 WSIs) 

RCC Subtyping 
TCGA-RCC 
(937 WSIs) 

CENTER-3-RCC 
(88 slides) 

ILC & IDC classification 
TCGA-BRCA 
(985 WSIs) 

CENTER-3-LD 
(383 WSIs) 

Breast Carcinoma Subtyping 
BRACS 
(545 WSIs) 

CENTER-3-BRCA 
(467 WSIs) 

IDH Mutation Prediction in Glioma(1) 
TCGA-GBMLGG-IDH1 
(979 WSIs) 

EBRAIN-IDH1 
(852) 

Ovarian Cancer Subtyping 
UBC-OCEAN 
(527 WSIs) 

CENTER-3-Ovary 
(370 WSIs) 

Brain Tumor Subtyping(1) 
TCGA-GBMLGG-Subtyp-
ing 
(1276 WSIs) 

EBRAIN-Subtyping 
(732) 

Lesion Grade Classification (Colon 
Cancer) 

IMP-CRS 
(5332 WSIs) 

CENTER-3-Colon-WSI 
(297 WSIs) 

Primary Site Prediction (Head & Neck 
Cancer) 

HANCOCK 
(708 WSIs) 

- 

T stage Prediction (Head & Neck Can-
cer) 

HANCOCK 
(705 WSIs) 

- 

Lauren Subtyping (Gastric Cancer) 
TCGA-STAD 
(390 WSIs) 

o CENTER-5-Lau-
ren 

(141 WSIs) 
o CENTER-4-Lau-

ren 
(319 WSIs) 
 

Vascular Invasion Detection (Gastric 
Cancer) 

CENTER-1-Vascular 
(396 WSIs) 

o CENTER-5-Vas-
cular (230 WSIs) 

o CENTER-4-



Vascular 
(319 WSIs) 
 

Perineural Invasion Detection (Gas-
tric Cancer) 

CENTER-1-Perineural 
(397 WSIs) 

o CENTER-5-Peri-
neural (232 WSIs) 

o CENTER-4- Peri-
neural 

(319 WSIs) 
 

Survival Analysis (Head & Neck Can-
cer) 

TCGA-HNSC 
(443 cases) 

HANCOCK 
(749 cases) 

Survival Analysis (Brain Cancer)(2) 

o TCGA-GBM  
(372 cases) 

o TCGA-LGG 
(462 cases) 

 

- 

Tumor infiltrating lymphocyte (TIL) 
classification 

Pancancer-TIL 
(304,097 patches) 

CENTER-3-TIL 
(18,492 patches) 

Colon Tissue Classification 
Chaoyang 
(6,160 patches) 

CENTER-3-Colon 
(21,068 patches) 

Gastic Tissue Classification 
GasHisDB 
(13,124 patches) 

CENTER-3-GC 
(2,537 patches) 

VQA for WSI 
WSI-VQA 
(977 WSIs) 

- 

Report Generation (Gastric Cancer) 
PatchGastricADC22 
(991 WSIs) 

- 

 
(1) In the previous manuscript, this task only performed internal training and testing on EBRAIN dataset. 

In the revised manuscript, we use the TCGA-GBMLGG as internal data and use the EBRAIN as the 
external data. 

(2) In the previous manuscript, this task is performed on TCGA-GBMLGG data. However, the comment 
6 raised by reviewer #3 suggests that GBM and LGG should predict separately due to distinct pa-
thology imaging profiles and very different prognoses. Therefore, we reformulate this task. 

The ranking scores of various foundation models across the expanded set of tasks are 
presented in the accompanying Figure 1. As shown, GPFM achieves the best average 
performance on both the 52 internal tasks and the 20 external validation tasks. This 
robust performance across a diverse set of tasks, including 28 non-TCGA and 20 exter-
nal validation tasks, underscores the generalizability of GPFM and the effectiveness of 
our proposed expert knowledge distillation pretraining strategy. We believe these addi-
tions and clarifications address the reviewer's concerns and further validate the gener-
alizability and robustness of our model. 



 
Figure 1. The ranking score of foundation models across 72 tasks. 

[1] Chen R J, Ding T, Lu M Y, et al. Towards a general-purpose foundation model for 
computational pathology[J]. Nature Medicine, 2024, 30(3): 850-862. 
[2] Filiot A, Ghermi R, Olivier A, et al. Scaling self-supervised learning for histopathol-
ogy with masked image modeling[J]. medRxiv, 2023: 2023.07. 21.23292757. 
[3] Zhou F, Chen H. Cross-modal translation and alignment for survival analy-
sis[C]//Proceedings of the IEEE/CVF International Conference on Computer Vision. 
2023: 21485-21494. 
[4] Zhou, Fengtao, et al. "iMD4GC: Incomplete Multimodal Data Integration to Ad-
vance Precise Treatment Response Prediction and Survival Analysis for Gastric Can-
cer." arXiv preprint arXiv:2404.01192 (2024). 
 
Comment 2. Related to the previous point, the authors did not stratify the pathology 
visual question answering, report generation, and image retrieval tasks by cancer type 
in their current analysis. If these results were stratified by cancer type, would the results 
change? 
Response: We appreciate the reviewer's insightful suggestion to analyze performance 
across different types of cancer. Following this recommendation, we stratified our eval-
uation by major organs (breast, lung, and kidney). The number of test cases for each 
organ is 188, 157, and 175 respectively. The analysis revealed that our GPFM model 
demonstrated superior performance for kidney-related report generation, achieving a 
BLEU-4 score of 0.255 compared to Phikon's 0.247. For breast and lung cancer reports, 



Phikon maintained its leading position with BLEU-4 scores of 0.194 and 0.179 respec-
tively, compared to GPFM's scores of 0.182 and 0.152. Based on the experimental re-
sults, the conclusion remains same stratified by cancer type. Detailed results for all 
models are shown in the following Table. Please refer to Extended Data Table A41 in 
the revised manuscript. 

 

Comment 3. Some of the selected foundation models were not fully evaluated. For 
example, the PLIP feature can be used for whole-slide pathology image classification 
and survival analyses. In addition, CONCH, Ctranspath, and UNI features can be used 
for survival analyses. However, these foundation models were not evaluated for these 
tasks. 
Response:  
We appreciate the opportunity to clarify this point. All foundation models, including 
PLIP, CONCH, CTransPath, and UNI, were evaluated across all 72 tasks, encompass-
ing WSI classification, survival analysis, and other relevant tasks. The potential confu-
sion may stem from Fig. 1b, 1c, and 1d. In Fig. 1b and 1c, we only plotted the top 4 
models based on their average ranking scores to ensure clarity in the visualization. 
In Fig. 1d, we evaluated all six models across the 72 tasks (including WSI classification, 
image retrieval, ROI classification, VQA, report generation, and survival analysis) and 
calculated the average performance for each task type to assist in expert selection. The 
full evaluation results, including the performance of all models across all tasks, are 
detailed in Fig. 2e-g. This comprehensive evaluation demonstrates that all foundation 
models were rigorously assessed for their capabilities in the specified tasks. 



 
Fig. 1 The overview of GPFM. 

 
Fig 2. Overall performance. 

 
Comment 4. Several new foundation models showed better performance in the tasks 
presented in the manuscript. These models include GigaPath, CHIEF, and Virchow V2. 



However, these models were not included in the current analyses. 
Response:  
We appreciate your comment regarding the latest foundation models. In response, we 
have conducted additional experiments to compare our method with two publicly avail-
able slide-level foundation models, CHIEF [1] and Prov-GigaPath [2]. As shown in Fig. 
2c-d, from a ranking perspective, GPFM, UNI, and Prov-GigaPath achieved the top 3 
positions, respectively. From an average metric perspective, GPFM, UNI, and Phi-
kon attained the top 3 positions, respectively. GPFM and UNI are still the most robust 
pathology foundation models. Regarding Virchow V2, while we acknowledge its po-
tential, it is currently excluded from our analysis due to the lack of peer-reviewed vali-
dation and restricted access to its implementation. We would like to emphasize that the 
core contribution of our work lies in proposing a novel knowledge distillation frame-
work capable of integrating information from multiple state-of-the-art foundation mod-
els. This framework remains valid and applicable even as newer and more powerful 
models emerge in the future. 
[1] Wang, Xiyue, et al. "A pathology foundation model for cancer diagnosis and prog-
nosis prediction." Nature 634.8035 (2024): 970-978. 
[2] Xu, Hanwen, et al. "A whole-slide foundation model for digital pathology from real-
world data." Nature (2024): 1-8. 
 
 
Comment 5. The GPFM model for survival prediction showed substantial performance 
decay when applied to the publicly available Clinical Proteomic Tumor Analysis Con-
sortium (CPTAC) external validation dataset. The authors could discuss the potential 
implications of this finding. 
Response:  
Thank you for highlighting this issue. Upon revisiting our experiments, we identified a 
bug related to flipped censorship labels in the survival analysis tasks. After fixing this 
issue and re-evaluating the results across 15 survival analysis tasks (shown in Fig. 
4 and Fig. A3), we observed the following: 

1. For the LUAD survival analysis on TCGA and CPTAC data (Fig. A3h), 
while Phikon achieved the best performance on TCGA, it performed the worst 
on CPTAC. In contrast, GPFM ranked second on CPTAC, with performance 
only slightly lower than CHIEF. 

2. In another experiment using TCGA-HNSC as the internal dataset and HAN-
COCK as the external dataset, GPFM achieved the second-best performance, 
slightly lower than UNI. 

These results highlight that no single model consistently dominates all survival analysis 
tasks, underscoring the importance of developing robust models that generalize well 
across diverse cancer types. We have discussed these findings in Section 2.2. 
 
“It is noteworthy that survival analysis tasks are inherently more challenging than WSI 
classification, and no single model has been able to dominate these tasks (Fig. 2e). The 
experimental results from both WSI classification and survival analysis highlight the 



limited generalization capability of existing FMs. This limitation is likely attributable 
to the data distribution of their training sets and the pretraining methods they employ. 
While existing FMs exhibit limited generalization, they demonstrate exceptional per-
formance on specific types of tasks. By leveraging their individual strengths, it is pos-
sible to construct a more powerful and versatile model. This is precisely what we have 
achieved in this study: we propose a unified distillation framework to distill the capa-
bilities of existing models--particularly in tasks where they excel--into the GPFM, 
thereby significantly enhancing its generalization ability.” 

 
 



 
 

Comment 6. Glioblastoma (GBM) and low-grade glioma (LGG) have distinct pathol-
ogy imaging profiles and very different prognoses. They should be separated in the 
survival outcome prediction. The pooled analyses shown in the current manuscript do 
not have clinical significance. 
Response:  
We thank the reviewer for this insightful comment regarding the distinct nature of GBM 
and LGG. We fully agree that these two types of gliomas have distinct pathological 
characteristics and prognostic profiles. To address this important point, we conducted 
separate analyses by splitting the TCGA-GBMLGG dataset into TCGA-GBM and 
TCGA-LGG cohorts. As shown in Table A22, our GPFM model demonstrates robust 
performance across both individual cohorts: 



1. For GBM patients, GPFM achieved the highest performance (C-index: 0.590, 95% 
CI: 0.500-0.676) among all compared methods, suggesting its superior capability in 
predicting outcomes for this aggressive tumor type. 

2. For LGG patients, GPFM achieved the second-highest performance (C-index: 
0.731, 95% CI: 0.562-0.872) behind CONCH (C-index: 0.771). 

3. Notably, GPFM maintained consistent performance across both subtypes, with rel-
atively narrow confidence intervals, indicating its robust generalizability. 

 
 

Comment 7. The pathology visual question answering dataset appears to be very noisy, 
and the meaning of the labels is unclear. For example, what does “polycystic disease 
infant” mean? A more precise term might be “polycystic kidney disease of the infant.” 
Similarly, the example of “What is present? Answer: cardiovascular” is also unclear. A 
better description could be, “What is the tissue type shown in this pathology image? 
Answer: Blood vessels.” 
Response:  
Thank you for your insightful comment regarding the PathVQA dataset. We 
acknowledge that some labels in the PathVQA dataset, such as “polycystic disease in-
fant” and “What is present? Answer: cardiovascular,” may appear unclear. The 
PathVQA dataset was constructed from two publicly available pathology textbooks 
(“Textbook of Pathology” and “Basic Pathology”) and the Pathology Education Infor-
mational Resource (PEIR) digital library. During dataset construction, the original sen-
tences were simplified to avoid overly complex syntactic structures, which may have 
introduced some noise and ambiguity in the labels. However, the key information in the 
question-answer pairs remains intact, ensuring that the evaluation of different models 
on this dataset is still fair, as demonstrated in Fig. 6. 
To further validate our findings, we also evaluated the models on a WSI-level VQA 
dataset [2], as shown in Fig. A6. Across both datasets, GPFM achieved the second-best 
performance, demonstrating its robustness and strong overall performance. 



 

 



 
[1] He X, Zhang Y, Mou L, et al. Pathvqa: 30000+ questions for medical visual question 
answering[J]. arXiv preprint arXiv:2003.10286, 2020. 
[2] Chen, Pingyi, et al. "Wsi-vqa: Interpreting whole slide images by generative visual 
question answering." ECCV. Springer, Cham, 2025. 
 
 

Comment 8. The BLEU scores presented in the pathology report generation task are 
low (<0.4). In addition, Phikon has performed better than the method proposed by the 
authors across all evaluation metrics. The authors could further investigate the perfor-
mance of Phikon in non-TCGA datasets for this task. 

Response: We thank the reviewer for this insightful comment regarding model perfor-
mance evaluation on report generation. Regarding the low BLEU scores in the TCGA 
WSI-report dataset, this is attributable to several key factors: 

1. The pathology reports in the TCGA WSI-report dataset are comprehensive and 
highly detailed, often containing multiple sections describing various aspects like 



tumor characteristics, tissue architecture, cellular features, and molecular markers. 
2. Pathologists frequently use different but equally valid medical terminology and sen-

tence structures to describe the same pathological findings, making exact phrase 
matching (which BLEU measures) less likely. 

3. The sequential nature of report writing means that similar observations might be 
documented in different orders, further impacting n-gram based metrics like BLEU. 

 
To rigorously assess the generalizability of our approach, we conducted additional eval-
uations on the PatchGastricADC22 Dataset [1], which comprises 991 paired diagnostic 
captions of stomach adenocarcinoma endoscopic biopsy specimens. This dataset pro-
vides an important validation as it represents a different institutional source and cancer 
type from the TCGA WSI-report dataset. 

As shown in Table A41, our analysis reveals several key findings: 

1. While Phikon still manages to achieve the highest scores (BLEU-1: 0.655±0.025, 
ROUGE-L: 0.623±0.026), our GPFM demonstrates strong competitive perfor-
mance:  

a. BLEU-1: 0.651±0.021 (second-highest, only 0.004 difference) 
b. BLEU-2: 0.569±0.023 (second-highest) 
c. BLEU-3: 0.512±0.025 (second-highest) 
d. BLEU-4: 0.470±0.026 (second-highest) 

2. When considering the complete evaluation metrics suite, GPFM consistently ranks 
among the top two performers across all metrics, demonstrating robust and stable 
performance. 

 
These findings are consistent with the results in TCGA WSI-report Dataset, as shown 
in Table A40. 

 



 
[1] Tsuneki, Masayuki, and Fahdi Kanavati. "Inference of captions from histopatholog-
ical patches." International Conference on Medical Imaging with Deep Learning. 
PMLR, 2022. 
 

Comment 9. In addition to the BLEU scores and related metrics, blinded human-based 
evaluation of the generated pathology reports will provide better insights into the qual-
ity of the generated texts. 
Response:  
We appreciate the reviewer's valuable suggestion regarding human evaluation. To ad-
dress this, we conducted a rigorous evaluation in collaboration with an experienced 
pathologist. The assessment used a four-tier scoring system as described in Fig. A5. 

 
We evaluated nine models across three distinct cancer types: breast (n=188), lung 
(n=157), and kidney (n=175). The results in Table A42 demonstrate several key find-
ings: 
 
1. GPFM consistently achieved superior performance:  

a. Breast cancer: tied for highest average score (0.38) with UNI 
b. Lung cancer: highest average score (0.42) 



c. Kidney cancer: highest average score (0.50) 
2. Qualitative analysis reveals GPFM's strengths:  

a. Lowest number of completely incorrect reports (Score: 0) across all cancer 
types 

b. Highest proportion of largely accurate reports (Score: 0.7) for kidney cancer 
(90 reports) 

c. Strong performance in maintaining report accuracy for lung cancer (51 re-
ports with Score: 0.7) 

3. Cross-cancer consistency:  
a. GPFM showed progressive improvement from breast (0.38) to lung (0.42) 

to kidney (0.50) cancers 
b. Maintained consistently low error rates across all cancer types compared to 

baseline models like ResNet50 

These human evaluation results complement our automated metrics and provide strong 
evidence for GPFM's capability to generate clinically relevant and accurate pathology 
reports across different cancer types. 

 
 

Comment 10. It is interesting to see that DINOv2 without expert knowledge distillation 



performs much better than the proposed methods in the BreakHis dataset. The authors 
could discuss the potential reasons behind this. 
Response:  
Thank you for your thoughtful review and observation about the performance of DI-
NOv2 on the BreakHis dataset. The key contribution of our paper is developing a foun-
dation model by expert and self knowledge distillation. Balancing the contributions of 
different experts is crucial. For instance, CONCH’s performance (AUC) on the 
BreakHis dataset is only slightly better than ResNet50, indicating that this "less effec-
tive knowledge" may dominate the distillation process, thereby reducing the perfor-
mance of GPFM in this task. Our experiments in other tasks (e.g., survival analysis) 
also illustrate that even when we distill the most powerful models into a single frame-
work, it may not outperform experts in all tasks. There is an inherent trade-off in the 
distillation process. Finding the right balance among different experts and developing 
more effective distillation methods may be a promising direction for future research. 
To avoid any potential confusion of this part, we discussed this phenomenon in the 
ablation study section. The discussion is shown below: 
“However, even with the distillation, GPFM still can not beat vanilla DINOv2 in all 
tasks such as Chaoyang and BreakHis, illustrating that there is still room for improving 
the distillation strategy.” 
 
Comment11. The authors did not compute the p-values for the tasks where GPFM per-
forms worse. Adding these statistical analyses will help readers better understand the 
differences between GPFM and the better-performing models in these instances. 
Response: 
Thanks for your reminder. We adopted the Wilcoxon signed-rank one-side test to detect 
significant differences for all tasks. We computed the significance of our method and 
the best alternative method. The results are shown in the following figures. 

 
 



 



 



 



 
 
 
Additional comment 1: The figure legend of Figure 6d is incomplete. 
Response:  
Thank you for pointing out the problem of Figure 6d. We actually use different colors 
to represent different models for all subfigures. The legend is placed at the top of Figure 
6, which may exist potential confusion. To avoid misleading, we adjusted the layout of 
Figure 6. The revised figure is shown below: 



 
 
Code: The code provides a README file with sufficient instructions for installing and 
running the application. 
Response:  
We appreciate your acknowledgment of the sufficient instructions provided for in-
stalling and running the application. If there are any additional suggestions or areas for 
improvement, please let us know! 


