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Summary
Background Triple-negative breast cancer (TNBC), recognised as the most aggressive subtype of breast cancer, has a 
high recurrence rate and poor treatment outcomes. Current diagnosis relies heavily on immunohistochemistry, which 
can be time-consuming and costly, while prognostic stratification remains limited by traditional clinicopathological 
features. This study aimed to develop and validate an artificial intelligence (AI)-powered TNBC identification and 
prognosis prediction (TRIP) system using haematoxylin and eosin (H&E)-stained pathology images.

Methods In this multicentre retrospective study, we analysed haematoxylin and eosin (H&E)-stained whole slide 
images (WSIs) of 2045 patients with breast cancer from The First Affiliated Hospital, Zhejiang University School of 
Medicine, Hangzhou, China (FAH) between June 1, 2007 and December 31, 2022. Among these, 451 patients with 
TNBC had follow-up outcomes on disease-free survival and overall survival. Patients were excluded if they had other 
synchronous malignant neoplasms within five years or had previously received neoadjuvant chemotherapy. We 
developed and validated a deep learning system, TRIP, to classify TNBC versus other breast cancer subtypes and 
predict the cancer disease-free survival and overall survival on the FAH cohort. We employed the area under the 
receiver operating characteristic curve (AUC) to evaluate TNBC identification performance, and the concordance 
index (C-index) to evaluate the performance of disease-free survival and overall survival predictions. Beyond 
internal validation, the system was externally evaluated on independent retrospective cohorts from four tertiary 
hospitals in Eastern and Central China (Shandong Provincial Hospital [SDPH], Sir Run Run Shaw Hospital of 
Zhejiang University [SRRS], Yiwu Central Hospital [YWCH], and The Central Hospital of Wuhan [WHCH]) 
between June 26, 2013 and December 31, 2024, and The Cancer Genome Atlas (TCGA) dataset between January 
1, 1988 and December 31, 2013, comprising 2793 cases for TNBC identification and 463 cases for prognosis 
prediction. Model interpretability was enhanced using pathology heatmaps, and multi-omics analysis was 
conducted to explore TNBC heterogeneity.

Findings The deep-learning model achieved an AUC of 0.980, 95% Confidence Interval (CI): 0.958–0.996, for 
identifying TNBC in the internal cohort, and AUCs of 0.916 (95% CI: 0.848–0.959), 0.936 (95% CI: 0.907–0.962), 
0.860 (95% CI: 0.779–0.930), and 0.890 (95% CI: 0.841–0.929) in the SDPH, SRRS, WHCH, and TCGA external
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validation cohorts, respectively. Moreover, it effectively predicted disease-free survival with a C-index of 0.747 ± 0.070 
(95% CI: 0.617–0.852) in the internal cohort and C-indices of 0.731 ± 0.047 (95% CI: 0.623–0.839) and 0.732 ± 0.043 
(95% CI: 0.621–0.840) in the SDPH, SRRS, YWCH cohorts combined (EXSURV), and the TCGA cohort, respectively, 
and overall survival with a C-index of 0.744 ± 0.075 (95% CI: 0.602–0.865) in the internal cohort and C-indices of 
0.720 ± 0.034 (95% CI: 0.566–0.865) and 0.721 ± 0.030 (95% CI: 0.625–0.818) in the EXSURV and TCGA cohorts, 
respectively. Heatmaps revealed key histologic features of TNBC, including nuclear atypia, necrosis, and immune-
cold microenvironments in aggressive cases, while lymphoplasmacytic infiltration indicated better prognosis. Multi-
omics analysis identified three molecular subtypes with distinct immune and pro-tumour signalling profiles, 
supporting the TRIP system’s prognostic accuracy in alignment with molecular evidence.

Interpretation TRIP is an effective and interpretable artificial intelligence system that demonstrates strong perfor-
mance in identifying TNBC and predicting its disease-free survival and overall survival. However, the current findings 
are primarily derived from post-surgical tissue data and do not incorporate clinical variables, which limits the system’s 
immediate applicability in pre-operative settings. To overcome these constraints, future prospective studies should be 
conducted to validate its clinical utility, particularly in pre-operative and broader real-world scenarios.
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Introduction
Triple-negative breast cancer (TNBC) accounts for 
about 15% of patients with breast cancer and is char-
acterised by its aggressive nature, rapid growth, and 
high likelihood of metastasis and recurrence after 
treatment. 1 The 5-year survival rate of TNBC is about

75%, which is significantly lower than other breast 
cancer subtypes (>90%). 2 TNBC is defined as the 
tumours that lack the expression of estrogen receptor 
(ER), progesterone receptor (PR), and human 
epidermal growth factor receptor 2 (HER2), all of which 
are molecular targets of therapeutic agents. 3–5 In clinical

Research in context

Evidence before this study
We searched PubMed with the search term (“triple-negative 
breast cancer”) AND (“artificial intelligence” OR “deep 
learning”) AND (“pathology” OR “histopathology”) for 
published articles without language restrictions from 

database inception to May 7, 2025. We identified 177 
studies, six of which applied artificial intelligence (AI) 
techniques for triple-negative breast cancer (TNBC) 
identification or prognosis prediction. However, the patient 
populations utilised to develop and validate AI models are 
typically less than two cohorts, comprising <600 TNBC 
patients altogether. Moreover, these studies mainly focused 
on building an AI model to address a specific task, instead of 
developing a system to facilitate the broader and deeper 
integration of AI into clinical practice.

Added value of this study
According to our literature search results, we developed 
TNBC identification and prognosis prediction (TRIP), an 
accurate, generalisable, and interpretable AI-powered system 

for TNBC identification and prognosis prediction. Addressing 
the gap in current AI research for TNBC, we rigorously

validated TRIP across diverse TNBC populations from 

multiple centres in China as well as the TCGA dataset. To our 
knowledge, this study represents the largest dataset to date 
(>1000 TNBC patients) used for the development and 
validation of an AI system tailored to TNBC. Furthermore, it 
is the first AI system designed to simultaneously address 
multiple clinical tasks in TNBC, thereby facilitating its 
potential integration into clinical practice.

Implications of all the available evidence
This study built a publicly available AI system for the 
diagnosis and prognosis prediction of TNBC. Our system 

shows good performance in identifying patients with TNBC 
using haematoxylin and eosin (H&E)-stained pathology 
images, with the potential to streamline 
immunohistochemistry workflows and reduce pathologists’ 
workload. In addition, its prognostic capability provides 
clinically relevant insights into disease progression, 
supporting more informed and timely clinical decision-
making. Nevertheless, prospective trials are warranted to 
further validate its utility in real-world clinical practice and 
confirm its contribution to improving patient care.
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practice, the diagnosis of TNBC primarily relies on the 
assessment of ER and PR protein expression levels by 
immunohistochemistry (IHC), and of HER2 by IHC 
and/or fluorescence in situ hybridization (FISH). 6 

However, the adoption of these molecular signature-
based tests is limited by their high cost, long turn-
around time, and requirement for suitable tissue 
samples. Thus, an alternative method that is practical, 
cost-effective, and utilises readily available samples for 
TNBC identification beyond receptor subtyping could 
be of great utility. Moreover, due to the high heteroge-
neity of TNBC, patients with the same tumour-lymph 
node-metastasis (TNM) stage may experience notably 
distinct clinical prognoses. Therefore, there is an urgent 
need to establish a model for predicting the prognosis 
of TNBC. Several prognostic biomarkers, such as stro-
mal tumour-infiltrating lymphocytes (sTIL) and 
tumour-associated stroma (TAS), have been identified 
as influential for the survival of patients with TNBC. 7–9 

However, given that numerous factors within the 
tumour microenvironment contribute to TNBC pro-
gression, solely depending on a limited number of 
biomarkers may not yield precise prognosis prediction.

Over the past decade, with tremendous advances in 
computing power, deep learning has become an effec-
tive tool in computational pathology, particularly for 
giga-pixel whole slide images (WSIs). 10–16 Significant 
progress has been made across various malignancies, 
such as lung, ovarian, liver, and colorectal cancers, with 
applications spanning diagnosis (e.g., tumour detection, 
subtyping, and grading) and prognosis (e.g., biomarker 
discovery, treatment response prediction, and survival 
analysis). 17–21 However, computational pathology for 
TNBC remains relatively underexplored. Existing studies 
are limited by small cohort sizes, overreliance on pre-
defined biomarkers (e.g., stromal tumour-infiltrating 
lymphocytes), fragmented multi-stage pipelines, and 
lack of external validation, collectively hindering clinical 
translation. 22–27

Previous efforts have primarily focused on molecular 
subtype prediction or semi-quantitative biomarker 
assessment. For instance, Gamble et al. proposed a two-
stage pipeline combining patch-level convolutional 
neural networks with slide-level logistic regression, 
achieving moderate area under the receiver operating 
characteristic curves (AUCs) for ER (0.83), PR (0.72), and 
HER2 (0.58). 28 Jang et al. applied a weakly supervised 
framework (CLAM) to classify breast cancer subtypes but 
attained limited TNBC sensitivity (67.14%, n = 228). 26 

In the prognostic domain, several studies explored 
tumour-infiltrating lymphocyte (TIL) features 22–25 or 
tumour-stroma ratios, 27 but their reliance on labour-
intensive annotations or handcrafted features often led 
to moderate predictive performance and poor cross-cohort 
generalisability.

These limitations underscore the need for a robust, 
fully automated, and generalisable system capable of

jointly identifying TNBC and predicting patient prog-
nosis from standard haematoxylin and eosin (H&E)- 
stained WSIs. To address this gap, we developed and 
comprehensively validated a unified, end-to-end deep 
learning system, TRIP, that integrates a pathology 
foundation model with effective long-sequence model-
ling to extract clinically significant histological patterns 
across large-scale breast cancer cohorts from five 
top-tier hospitals and public datasets, as shown in 
Fig. 1. The TRIP system aims to support comprehen-
sive TNBC management in routine pathology work-
flows, offering both diagnostic and prognostic utility in 
a single pipeline.

Methods
Study design and population
We defined the following inclusion and exclusion 
criteria to ensure cohort consistency across centres. 
Patients were eligible for inclusion if they had (1) his-
tologically confirmed breast cancer, (2) available 
H&E-stained whole slide images, and (3) complete 
clinicopathological information. Patients were excluded 
if they had (1) other synchronous malignant neoplasms 
within five years or (2) had previously received neo-
adjuvant chemotherapy. All patients underwent IHC 
testing for ER, PR, and HER2 status, and those negative 
for all three markers were classified as triple-negative 
breast cancer. For specific analyses, survival cohorts 
were required to have complete follow-up data, and 
genetic analyses were performed only on patients with 
sufficient, qualified tissue specimens. A flow diagram 
of our inclusion/exclusion criteria is illustrated in 
Fig. S1.

In this multicentre retrospective study, we reviewed 
the data of 4898 patients with breast cancer from five 
medical centres and a public repository, and all patients 
underwent surgery. Among these, 2045 patients with 
breast cancer were treated at the First Affiliated 
Hospital of Zhejiang University (FAH) from June 1, 
2007 to December 31, 2022, where 451 patients with 
TNBC had follow-up data on disease-free survival and 
overall survival; 421 patients with breast cancer were 
treated at Shandong Provincial Hospital (SDPH) from 
February 25, 2014 to December 31, 2023, where 79 
patients with TNBC had follow-up data; 788 patients 
with breast cancer were treated at Sir Run Run Shaw 
Hospital of Zhejiang University (SRRS) from January 1, 
2015 to December 31, 2024, where 140 patients with 
TNBC with follow-up data; 60 TNBC patients were 
treated at Yiwu Central Hospital (YWCH) from June 26, 
2013 to August 1, 2022 with follow-up data; 522 patients 
with breast cancer were treated at The Central Hospital 
of Wuhan (WHCH) from January 1, 2020 to December 
31, 2024 without follow-up data. The follow-up data 
from collaborating hospitals range from 28 to 97 
months. Moreover, we also included 1062 patients with
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breast cancer from The Cancer Genome Atlas (TCGA) 
dataset, diagnosed between January 1, 1988 and 
December 31, 2013, where 167 and 184 patients with 
TNBC had follow-up data on disease-free survival and 
overall survival, respectively. 29 A statistical summary of 
these cohorts is provided in Table S1.

We organised the above datasets into multiple co-
horts for developing and validating the TRIP system. 
For TNBC identification, we randomly select 80% of 
patients (n = 1636) in the FAH cohort as the training 
cohort, while the rest of 20% (n = 409) patients 
constitute the internal validation cohort. Besides, the 
other four independent cohorts, i.e., SDPH, SRRS, 
WHCH, and TCGA cohorts, are employed as inde-
pendent sets for external validation, separately. For 
prognosis prediction, we conducted five-fold cross-vali-
dation on the WSIs of 451 patients with TNBC from the 
FAH cohort. Given the limited number of TNBC

patients with complete follow-up data in the SDPH, 
SRRS, and YWCH cohorts, we constructed a combined 
external validation cohort named EXSURV by aggre-
gating patients from these three sources. This strategy 
increases the total sample size and statistical power 
for survival analysis, thereby mitigating the unreliability 
introduced by small individual cohorts. The TCGA 
cohort was also employed as an additional external 
validation set. We followed the Transparent Reporting 
of a multivariable prediction model for Individual 
Prognosis Or Diagnosis Artificial Intelligence update 
(TRIPOD-AI) checklist to ensure best-practice 
reporting.

Outcomes
The primary objective was to use deep learning to 
identify TNBC among breast cancer populations from 
WSIs. TNBC is defined as IHC-negative for ER, PR, and

A

B

C

Fig. 1: Overview of study design. A. Clinical workflow for the diagnosis, treatment, and prognosis for patients with triple-negative breast 
cancer (TNBC). Biopsy was performed during surgery for each patient. H&E− and IHC-stained slides are digitalised to whole slide images. 
B–C. Development and independent validation of an end-to-end deep learning system to identify TNBC patients and predict the disease-free 
survival and overall survival. The primary validation dataset, FAH, was collected at First Affiliated Hospital of Zhejiang University (Hangzhou, 
China). Four in-house external validation cohorts, SDPH, WHCH, SRRS, YWCH include data collected at Shandong Provincial Hospital (Jinan, 
China), Sir Run Run Shaw Hospital of Zhejiang University (Hangzhou, China), Yiwu Central Hospital (Yiwu, China), and The Central Hospital of 
Wuhan (Wuhan, China). TCGA dataset is from https://portal.gdc.cancer.gov/. EXSURV is a combined cohort of SDPH, SRRS, and YWCH. 
AUROC, area under the receiver operator characteristic curve. H&E, haematoxylin and eosin. IHC, immunohistochemistry. TNBC, triple-
negative breast cancer. TTA, test-time adaptation.
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HER-2 (IHC score 0, 1+ or 2+ with negative HER-2 
FISH confirmation). The secondary objective was to 
predict treatment outcomes for patients with TNBC, 
i.e., overall survival and disease-free survival. Overall 
survival is defined as the time from primary surgery to 
death from any cause (censored at the last follow-up). 
Disease-free survival was defined as the time from 
completion of primary treatment to recurrence, new 
primary cancer, or death (censoring at death or date of 
the last visit).

Deep learning system development
The proposed TNBC identification and prognosis pre-
diction (TRIP) system is composed of two major mod-
ules, one responsible for TNBC discrimination from 
breast cancer populations, containing a TNBC classifi-
cation model, and the other accountable for prognosis 
prediction, including a disease-free survival analysis 
model and an overall survival analysis model. Unlike 
previous approaches that design specialised architec-
tures for individual tasks, we developed a unified mul-
tiple instance learning (MIL) framework shared across 
all tasks. This framework integrates a state-of-the-art 
pathology foundation model for patch-level feature 
extraction and a Mamba-based long-sequence model-
ling architecture for whole slide image analysis, as 
shown in Fig. S2. Following previous studies, we 
employed the CLAM toolkit 30 to divide each gigapixel 
WSI into non-overlapping 512 × 512 tissue patches, 
which were subsequently processed through feature 
extraction and aggregation to obtain slide-level repre-
sentations. Motivated by the recent success of histopa-
thology foundation models, we adopted GPFM, 31 the 
latest and most advanced model to date, as our feature 
extractor. Specifically, GPFM transforms the squared 
patches into a long sequence of patch embeddings 
without requiring additional stain normalisation tech-
niques. Traditional MIL methods typically treat WSIs as 
unordered collections of patches and rely on 
permutation-invariant operations, such as selecting the 
most predictive instance (e.g., MaxMIL) or applying 
attention-based pooling (e.g., AttMIL 15 ) to aggregate 
patch-level features into a slide-level representation. 
While these approaches can achieve reasonable per-
formance, they do not explicitly model spatial de-
pendencies or contextual relationships among distant 
patches. In contrast, our TRIP system introduces a 
bidirectional Mamba encoder that models patch se-
quences in both forward and reverse directions. 
Although the standard Mamba architecture enables 
efficient long-sequence modelling, its unidirectional 
nature may result in early sequence information being 
overlooked. By incorporating bidirectional processing, 
TRIP captures long-range dependencies across the 
entire slide and mitigates information loss. The bidi-
rectional outputs are then fused and passed through a 
lightweight attention-based aggregator to generate task-

specific predictions. To further improve robustness to 
domain shifts across validation cohorts, such as varia-
tions in staining, scanning, and site-specific biases, we 
adopted test-time adaptation (TTA) 32 to improve the 
model’s generalisation ability by fine-tuning the 
parameters of normalisation layers while freezing all 
other parameters in the TRIP system. The binary cross-
entropy loss and negative log-likelihood (NLL) loss with 
censorship were employed as the objective functions for 
TNBC identification and survival analysis, respectively. 
We trained our models for 20 epochs using the Adam 
optimiser with a learning rate of 1e-4. Of note, the final 
model was selected based on its best performance on 
the internal validation set across 20 training epochs. All 
experiments were conducted using the PyTorch 
framework, and further implementation details are 
described in the Supplementary Material.

Interpretability analysis
To assist with explainability, we generated saliency 
maps for the WSIs to investigate what areas were 
important for prediction. We extracted attention scores 
of all patches from the attention aggregator module in 
the TRIP model and applied the Min-Max normal-
isation to rescale them into the range of [0,1]. After-
wards, we generate the heatmaps by geographically 
stitching the normalised attention scores into a 2D map 
with a similar aspect ratio to the original WSI, where 
the points that correspond to background (i.e., non-
tissue regions) are assigned zeros. These heatmaps 
are then overlapped with the thumbnails of the WSIs 
for visualisation. Based on these saliency maps, two 
board-certified pathologists (with 10 and 17 years of 
experience, respectively) manually examined the most 
discriminative patches to discover crucial patterns 
associated with TNBC identification and prognosis. 
Furthermore, to further demonstrate our findings, we 
extracted fourteen geometric and texture features be-
tween two compared samples using the analysis tool 
proposed by Zhao et al. 33

Integrated multi-omics analysis
To confirm that our TRIP system’s prognostic accuracy 
is in alignment with molecular evidence, 211 patients 
from the FAH cohort have undergone whole-genome 
RNA sequencing with details in our Supplementary 
Material. We performed integrated multi-omics anal-
ysis to characterise molecular heterogeneity in triple-
negative breast cancer. First, we applied differential 
gene expression (DGE) analysis on the transcriptomic 
data. The high-risk and low-risk TNBC samples, strati-
fied by the TRIP prognostic system, were compared 
using DESeq2 (v1.30.1) with thresholds of |log 2 fold-
change| > 1 and false discovery rate (FDR) < 0.05. Then, 
significant genes were visualised via a volcano plot, 
highlighting upregulated (red) and downregulated 
(blue) genes. Then, we applied gene set variation
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analysis (GSVA) to quantify the enrichment scores of 
Hallmark gene sets (MSigDB v7.4) in each sample, 
followed by consensus clustering to define several 
molecular subgroups.

Statistical analysis
For TNBC identification, the performance of the model 
was assessed using AUC, sensitivity, specificity, accu-
racy, positive predictive value (PPV), negative predictive 
value (NPV), and F1 score, along with their 95% con-
fidence intervals (CIs). Statistical comparisons of AUCs 
were performed using DeLong’s test, while sensitivity 
and specificity were compared using the two-sided 
McNemar test to evaluate significant differences be-
tween models. As for survival analysis, the prognostic 
performance was quantified using Harrell’s concor-
dance index (C-index). Survival distributions between 
predicted high- and low-risk groups were compared 
using Kaplan–Meier analysis with log-rank testing.

Ethical approval
This study was approved by the Clinical Research Ethics 
Committee of the First Affiliated Hospital of Zhejiang 
University (Reference: 2024–1348). Four other hospi-
tals, including Shandong Provincial Hospital, Sir Run 
Run Shaw Hospital of Zhejiang University, Yiwu 
Central Hospital, and The Central Hospital of Wuhan, 
have accepted the decision of the Clinical Research 
Ethics Committee of the First Affiliated Hospital of 
Zhejiang University. Informed consent was waived for 
the retrospective study. All public datasets were fully de-
identified and publicly available, eliminating the need 
for additional ethical approvals.

Role of the funding source
The funders of this study had no roles in study design, 
data collection, data analysis, data interpretation, or 
writing of the report. All authors had full access to the 
data in the study and take responsibility for the integrity 
of the data and the accuracy of the data analysis. XMZ 
and HC had final responsibility for the decision to 
submit for publication.

Results
The clinicopathological characteristics of the patients in 
the primary dataset and the external validation datasets 
for TNBC identification and prognosis prediction are 
reported in Tables 1 and 2, respectively. For TNBC 
identification, the training cohort from FAH includes 
1636 patients (mean age of 53.75), among which TNBC 
cases account for about 28.9% (n = 473), and the in-
ternal validation cohort contains 409 patients with 
29.4% being TNBC. The external validation cohorts, i.e., 
SDPH, SRRS, WHCH, and TCGA, contain 421, 788, 
522, and 1062 patients with mean ages of 51.83, 53.75, 
57.08, and 58.42, respectively, and the corresponding

patients with TNBC occupy 24.0%, 37.2%, 15.7%, and 
17.4%, accordingly. In terms of laterality, the propor-
tion of the left side and the right side is quite similar, 
and the occurrence rate of bilateral cases is quite mar-
ginal (i.e., less than 2%) across all cohorts. For TNBC 
prognosis prediction, the mean age of patients with 
TNBC in FAH, TCGA and EXSURV cohorts is 53.53, 
53.62, and 55.39, respectively. The recurrence rates of 
FAH, TCGA and EXSURV are 15.7%, 7.9% and 11.4% 
while the mortality rates are 13.1%, 5.4% and 13.6%, 
accordingly. In the internal cohort, the median (IQR) 
follow-up time for DFS and OS was 71.8 (45.8, 96.3) 
and 74.2 (49.5, 97.1) months, respectively. In the com-
bined external validation cohort, i.e., EXSURV, the 
median (IQR) follow-up time for DFS and OS was 50.0 
(31.0, 68.5) and 51.0 (33.0, 69.0) months. In the public 
TCGA cohort, the median (IQR) follow-up time for DFS 
and OS was 28.2 (14.3, 59.4) and 29.8 (14.2, 62.0) 
months, respectively.

For the TNBC identification experiments, the results 
in five cohorts, i.e., the internal validation cohort FAH 
and four external cohorts: SDPH, SRRS, WHCH, and 
TCGA, are reported in Table 3. Our TRIP system with 
TTA showed high prediction efficacy in identifying 
TNBC among patients with breast cancer in the internal 
validation cohort (i.e., FAH), obtaining an AUC of 0.980 
(95% CI 0.958–0.996), a sensitivity of 0.963 (95% CI 
0.926–0.993), a specificity of 0.857 (95% CI 0.750– 
0.943), an accuracy of 0.934 (0.890–0.971), a PPV of 
0.947 (0.897–0.980), a NPV of 0.897 (0.802–0.983) and a 
F1 score of 0.955 (0.922–0.980). When deployed to the 
external cohorts, the TRIP system with TTA demon-
strated a good generalisability in various clinical sce-
narios, consistently achieving high predictive 
performance, e.g., AUCs of 0.916 (95% CI 0.848–0.959), 
0.936 (95% CI 0.907–0.962), 0.860 (95% CI 0.779– 
0.930), and 0.890 (95% CI: 0.841–0.929) in the SDPH, 
SRRS, WHCH, and TCGA cohorts, respectively 
(Table 3, Fig. 2). In comparison to two state-of-the-art 
AI models, i.e., MaxMIL and AttMIL, TRIP showed 
prominent superiority, improving AUCs by 5.2% and 
3.5% in absolute terms in the internal validation cohort 
(P-values <0.0001). Consistently, in external validation, 
TRIP boosted the AUCs by 5.0%–17.0% (mean 10.8%) 
compared to MaxMIL (P-values ≤0.0011) and 2.1%– 
7.5% (mean 4.7%) compared to AttMIL (P-values
≤0.083). To ensure a fair comparison, we compared the 
specificities of the three deep learning models by 
maintaining similar sensitivities. Within the internal 
validation cohort, when sensitivity was kept at 96.3%, 
TRIP achieved a much higher specificity (85.7% [95% 
CI: 75.0%–94.3%]) than MaxMIL (67.0%, P-values 
<0.0001) and AttMIL (70.5%, P-values = 0.0001), with 
15.2%–18.7% improvement. In the external validation 
cohorts, while maintaining a similar sensitivity to other 
models, TRIP showed a specificity of 76.8%–85.1%, 
which significantly outperformed the MaxMIL model
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Variables Internal cohort External cohorts

FAH
 
training

 
cohort 

(n
 
= 1636)

FAH
 
validation

 
cohort 

(n
 
= 409)

SDPH
 
(n
 
= 421) SRRS (n = 788) WHCH

 
(n
 
= 522) TCGA

 
(n
 
= 1062)

Non-TNBC TNBC P-value Non-TNBC TNBC P-value Non-TNBC TNBC P-value Non-TNBC TNBC P-value Non-TNBC TNBC P-value Non-TNBC TNBC P-value

No. (%) 1163
(71.1%)

473
(28.9%)

293
(71.6%)

116
(28.4%)

320
(76.0%)

101
(24.0%)

495
(62.8%)

293
(37.2%)

440
(84.3%)

82
(15.7%)

877
(82.6%)

185
(17.4%)

Age 0.012 0.24 0.15 0.048 0.031 0.0009
Mean

 
(SD) 53.16

(11.50) 
54.53
(11.12) 

52.99
(11.99) 

54.76
(12.70) 

51.69
(10.53) 

53.01
(9.14) 

53.21
(11.22) 

54.65
(11.39) 

57.52
(12.22) 

54.70
(13.45) 

59.07
(13.33) 

55.39
(12.22) 

Median
 

(Min, Max) 52
(23, 92)

54
(24, 93)

53
(22. 86)

55
(29, 85)

51
(28, 82)

53
(32, 75)

52
(25, 94)

54.5
(22, 92)

57
(27, 91)

52.5
(30, 90)

59
(26, 90)

53
(29, 90)

Family history of 
breast cancer

0.017 0.0007 0.90 0.61 0.62 –

No 1062
(91.3%)

448
(94.7%)

289
(98.6%)

101
(87.1%)

291
(90.9%)

91
(90.1%)

451
(91.1%)

272
(92.8%)

399
(90.7%)

74
(90.2%)

0
(0%)

0
(0%)

Yes 79
(6.8%)

17
(3.6%)

1
(0.3%)

13
(11.2%)

19
(5.9%)

7
(6.9%)

29
(5.9%)

14
(4.8%)

26
(5.9%)

3
(3.7%)

0
(0%)

0
(0%)

Unknown 22
(1.9%)

8
(1.7%)

3
(1.0%)

2
(1.7%)

10
(3.1%)

3
(3.0%)

15
(3.0%)

7
(2.4%)

15
(3.4%)

5
(6.1%)

877
(100%)

185
(100%)

Histological type 0.12 0.72 0.11 0.022 0.46 –
Not otherwise 
specified

1094
 

(94.1%)
456

 
(96.4%)

279
 

(95.2%)
111 
(95.7%)

295 
(92.2%)

99
 

(98.0%)
482 
(97.4%)

275 
(93.9%)

379
 

(86.1%)
69
 

(84.1%)
0
 
(0%)

0
(0%)

Infiltrating lobular
carcinoma

14
(1.2%)

2
(0.4%)

1
(0.3%)

1
(0.9%)

2
(0.6%)

0
(0%)

0
(0%)

2
(0.7%)

16
(3.6%)

1
(1.2%)

0
(0%)

0
(0%)

Others 55
(4.7%)

15
(3.2%)

13
(4.4%)

4
(3.4%)

23
(7.2%)

2
(2.0%)

13
(2.6%)

16
(5.5%)

45
(10.2%)

12
(14.6%)

877
(100%)

185
(100%)

Laterality 0.20 0.28 0.68 0.037 0.60 –
Bilateral 3

(0.3%)
4
(0.8%)

0
(0%)

1
(0.9%)

0
(0%)

0
(0%)

8
(1.6%)

0
(0%)

3
(0.7%)

0
(0%)

0
(0%)

0
(0%)

Left 606
(52.1%)

236
(49.9%)

152
(51.9%)

61
(52.6%)

190
(59.4%)

57
(56.4%)

239
(48.3%)

151
(51.5%)

236
(53.6%)

41
(50.0%)

0
(0%)

0
(0%)

Right 554
(47.6%)

233
(49.3%)

141
(48.1%)

54
(46.5%)

130
(40.6%)

44
(43.6%)

248
(50.1%)

126
(43.0%)

200
(45.5%)

41
(50.0%)

0
(0%)

0
(0%)

Unknown 0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

16
(5.5%)

1
(0.2%)

0
(0%)

877
(100%)

185
(100%)

Grade 0.0005 0.0008 0.0004 0.0008 0.0006 –
I 64

(5.5%)
1
(0.2%)

17
(5.8%)

1
(0.9%)

17
(5.3%)

0
(0%)

28
(5.7%)

3
(1.0%)

28
(6.4%)

0
(0%)

0
(0%)

0
(0%)

II 619
(53.2%)

98
(20.7%)

148
(50.5%)

28
(24.1%)

205
(64.1%)

32
(31.7%)

268
(54.1%)

53
(18.1%)

273
(62.0%)

16
(19.5%)

0
(0%)

0
(0%)

III 480
(41.3%)

374
(79.1%)

128
(43.7%)

87
(75.0%)

98
(30.6%)

69
(68.3%)

187
(37.8%)

217
(74.1%)

132
(30.0%)

65
(79.3%)

0
(0%)

0
(0%)

Unknown 0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

12
(2.4%)

20
(6.8%)

7
(1.6%)

1
(1.2%)

877
(100%)

185
(100%)

Stage 0.0011 0.97 0.048 0.15 0.93 0.0008
I 506

(43.5%)
186
(39.3%)

123
(42.0%)

47
(40.5%)

101
(31.6%)

34
(33.6%)

207
(41.8%)

120
(41.0%)

158
(35.9%)

28
(34.1%)

145
(16.5%)

32
(17.3%)

II 498
(42.8%)

245
(51.8%)

133
(45.4%)

54
(46.6%)

136
(42.5%)

45
(44.6%)

216
(43.6%)

127
(43.3%)

273
(62.0%)

53
(64.6%)

479
(54.6%)

124
(67.0%)

III 150
(12.9%)

40
(8.5%)

35
(11.9%)

14
(12.1%)

56
(17.5%)

12
(11.9%)

41
(8.3%)

28
(9.6%)

8
(1.8%)

1
(1.2%)

221
(25.2%)

23
(12.4%)

IV 0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

0
(0%)

3
(1.0%)

1
(0.2%)

0
(0%)

14
(1.6%)

5
(2.7%)

(Table 1 continues on
 

next page)
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(43.6%–74.7%) and AttMIL model (64.3%–80.5%), with 
an average improvement of 24.6% and 11.8%, respec-
tively. Of note, the TTA strategy enhanced the gener-
alisation capability of the TRIP model, with a mean 
increase of 1.0% in AUC (P-values ≤0.35) and 2.0% in 
specificity in the external validation cohorts. We also 
incorporated TTA into both AttMIL and MaxMIL for 
TNBC identification in Table S2. Although TTA 
improved the performance of both models, their results 
consistently lagged behind those of our proposed TRIP 
system, highlighting the added effectiveness of TRIP 
beyond test-time adaptation alone.

Following the identification task, we assessed the 
prognostic capability of TRIP across the internal and 
external datasets in Table 4. In the FAH cohort, TRIP 
with TTA achieved remarkable C-index values of 0.747 
(SD: 0.070) for disease-free survival (DFS) and 0.744 
(SD: 0.075) for overall survival (OS). When applied to 
the external validation cohorts, a modest decline in 
performance was observed, ranging from 1.5% to 
1.56% for DFS prediction and 2.4% to 2.3% for OS 
prediction. Specifically, TRIP yielded C-index values of 
0.731 (SD: 0.047) on EXSURV and 0.732 (SD: 0.043) on 
TCGA for DFS prediction, and 0.720 (SD: 0.034) on 
EXSURV and 0.721 (SD: 0.030) on TCGA for OS pre-
diction. In comparison, the two existing models 
exhibited inferior performance. On the internal FAH 
cohort, the MaxMIL model achieved C-index values of 
0.589 (SD: 0.110) in DFS prediction and 0.601 (SD: 
0.105) in OS prediction, while the AttMIL model per-
formed slightly better, with values of 0.679 (SD: 0.052) 
and 0.698 (SD: 0.034), accordingly. However, both 
models demonstrated substantial generalisation gaps 
when evaluated on external datasets. For instance, the 
MaxMIL model failed to generate valid predictions on 
the TCGA cohort (C-index <0.5), and the AttMIL model 
showed marked performance degradation—recording 
declines of 4.7% (EXSURV) and 23.7% (TCGA) for DFS 
prediction, and 18.7% (EXSURV) and 31.9% (TCGA) 
for OS prediction. Notably, incorporating TTA signifi-
cantly improved the generalisation of AI models, as 
shown in Table S3. With TTA, the average C-index 
values of TRIP increased from 0.682 to 0.737 for DFS 
prediction and from 0.688 to 0.728 for OS prediction. 
Importantly, the TRIP + TTA model achieved C-index 
values exceeding 0.720 across all external cohorts and 
outperformed other two models with TTA, highlighting 
its robustness and adaptability. In addition, Kaplan– 
Meier survival analyses in Fig. 3 showed that TRIP 
effectively stratified patients into high- and low-risk 
groups with statistically significant differences (log-
rank P-values <0.0033) across all datasets. We also 
exhibited the Kaplan–Meier survival curves for both 
AttMIL and MaxMIL in Fig. S3. While both models 
demonstrated effective patient stratification in the in-
ternal FAH cohort, their performance notably declinedVa
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in the external EXSURV and TCGA cohorts, indicating 
limited generalisability across independent datasets.

To further demonstrate the robustness of TRIP, we 
benchmarked GPFM against two representative alter-
natives, UNI 34 and PLIP, 35 with comparative results 
provided in Tables S4 and S5. While performance var-
ies with the choice of backbone, TRIP maintains robust 
performance across all tested representations,

demonstrating its generalisability across diverse set-
tings. In addition, we also conducted experiments on 
sub-group analysis, including age (using a threshold of 
50-year-olds), HER2 status (0 and low groups), and 
untreated subgroups in the FAH cohort, as shown in 
Table S6 and Fig. S4. Our TRIP system consistently 
showed good performance on these sub-groups ana-
lyses, demonstrating its generalisability.

Variables Internal cohort External cohorts

FAH (n = 451) SDPH (n = 79) SRRS (n = 140) YWCH (n = 60) EXSURV (n = 279) TCGA (n = 184)

Age
Mean (SD) 53.53 (11.58) 51.54 (9.63) 54.54 (10.01) 54.23 (13.63) 53.62 (12.56) 55.39 (12.22)
Median (Min, Max) 53 (22, 93) 53 (32, 75) 54 (25, 79) 54.5 (25, 88) 54 (25, 88) 58 (26, 90)

Family history of breast cancer
No 422 (93.6%) 73 (92.4%) 132 (94.3%) 54 (90.0%) 259 (92.8%) 00 (0%)
Yes 23 (5.1%) 4 (5.1%) 6 (4.3%) 4 (6.7%) 14 (5.0%) 00 (0%)
Unknown 6 (1.3%) 2 (2.5%) 2 (1.4%) 2 (3.3%) 6 (2.2%) 184 (100.0%)

Histological type
Not Otherwise Specified 432 (95.8%) 77 (97.5%) 124 (88.6%) 50 (83.3%) 251 (90.0%) 00 (0%)
Infiltrating lobular carcinoma 3 (0.7%) 00 (0%) 2 (1.4%) 00 (0%) 2 (0.7%) 00 (0%)
Others 16 (3.5%) 2 (2.5%) 14 (10.0%) 10 (16.7%) 26 (9.3%) 184 (100.0%)

Laterality
Bilateral 4 (0.9%) 00 (0%) 00 (0%) 00 (0%) 00 (0%) 00 (0%)
Left 232 (51.4%) 49 (62.0%) 75 (53.6%) 24 (40.0%) 148 (53.0%) 00 (0%)
Right 215 (47.7%) 30 (38.0%) 65 (46.4%) 36 (60.0%) 131 (47.0%) 00 (0%)
Unknown 00 (0%) 00 (0%) 00 (0%) 00 (0%) 00 (0%) 184 (100.0%)

Grade
I 1 (0.2%) 00 (0%) 2 (1.4%) 1 (1.7%) 3 (1.1%) 00 (0%)
II 95 (21.1%) 25 (31.6%) 26 (18.6%) 17 (28.3%) 68 (24.4%) 00 (0%)
III 355 (78.7%) 54 (68.4%) 112 (80.0%) 38 (63.3%) 204 (73.1%) 00 (0%)
Unknown 00 (0%) 00 (0%) 00 (0%) 4 (6.7%) 4 (1.4%) 184 (100.0%)

Stage
I 189 (41.9%) 27 (34.2%) 66 (47.1%) 25 (41.7%) 118 (42.3%) 32 (17.4%)
II 223 (49.4%) 35 (44.3%) 56 (40.0%) 28 (46.7%) 119 (42.6%) 124 (67.4%)
III 36 (8.0%) 9 (11.4%) 15 (10.7%) 7 (11.7%) 31 (11.1%) 23 (12.5%)
IV 00 (0%) 00 (0%) 3 (2.2%) 00 (0%) 3 (1.1%) 4 (2.2%)
Unknown 3 (0.7%) 8 (10.1%) 00 (0%) 00 (0%) 8 (2.9%) 1 (0.5%)

Lymph node metastasis
Yes 114 (25.3%) 18 (22.8%) 12 (8.6%) 16 (26.7%) 46 (16.5%) 67 (36.5%)
No 334 (74.0%) 53 (67.1%) 128 (91.4%) 44 (73.3%) 225 (80.6%) 116 (63.0%)
Unknown 3 (0.7%) 8 (10.1%) 00 (0%) 00 (0%) 8 (2.9%) 1 (0.5%)

Treatment
Mastectomy 149 (33.0%) 6 (7.6%) 12 (8.6%) 11 (18.3%) 29 (10.4%) 00 (0%)
Breast-conserving surgery 123 (27.3%) 4 (5.1%) 60 (42.9%) 14 (23.3%) 78 (28.0%) 00 (0%)
Modified radical mastectomy 176 (39.0%) 69 (87.3%) 68 (48.5%) 34 (56.7%) 171 (61.3%) 00 (0%)
Nipple-sparing mastectomy 3 (0.7%) 00 (0%) 00 (0%) 00 (0%) 00 (0%) 00 (0%)
Unknown 00 (0%) 00 (0%) 00 (0%) 1 (1.7%) 1 (0.3%) 184 (100.0%)

# of recurrence follow-up 451 (100%) 79 (100%) 140 (100%) 60 (100%) 279 (100%) 167 (90.8%)
Disease free survival in months: Median (IQR) 71.8 (45.8, 96.3) 85.0 (40.0, 97.0) 41.5 (28.0, 58,0) 55.0 (40.0, 75.8) 50.0 (31.0, 68.5) 28.2 (14.3, 59.4)
Recurrence 71 (15.7%) 3 (3.8%) 12 (8.6%) 7 (11.7%) 22 (7.9%) 19 (11.4%)
# of survival follow-up 451 (100%) 79 (100%) 140 (100%) 60 (100%) 279 (100%) 184 (100%)
Overall survival in months: Median (IQR) 74.2 (49.5, 97.1) 85.0 (42.5, 97.0) 41.5 (28.0, 58.0) 52.5 (35.8, 72.3) 51.0 (33.0, 69.0) 29.8 (14.2, 62.0)
Death 59 (13.1%) 2 (2.5%) 8 (5.7%) 5 (8.3%) 15 (5.4%) 25 (13.6%)

FAH, the First Affiliated Hospital of Zhejiang University. SDPH, Shandong Provincial Hospital. SRRS, Sir Run Run Shaw Hospital of Zhejiang University. YWCH, Yiwu Central Hospital. TCGA, The Cancer 
Genome Atlas. EXSURV, a combined external validation cohort of SDPH, SRRS, and YWCH cohorts. SD, standard deviation. Min, minimum. Max, maximum. #, number. IQR, interquartile range.

Table 2: Characteristics of patients in the training, internal, and external validation cohorts for triple-negative breast cancer prognosis prediction.

Articles

www.thelancet.com Vol 89 November, 2025 9

http://www.thelancet.com


Model AUC P-value Sensitivity P-value Specificity P-value Accuracy PPV NPV F1

Internal FAH 
cohort

MaxMIL 0.928
 

(0.871–0.970) <0.0001 0.963 (0.928–0.993) 1.000 0.670
 

(0.482–0.789) <0.0001 0.883 (0.804–0.929) 0.885 (0.784–0.934) 0.872 (0.728–0.973) 0.923 (0.868–0.955)
AttMIL 0.945 (0.904–0.976) <0.0001 0.963 (0.930–0.993) 1.000 0.705 (0.583–0.842) 0.0001 0.892 (0.834–0.941) 0.897 (0.829–0.943) 0.878

 
(0.753–0.978) 0.929

 
(0.883–0.963)

TRIP 0.974
 

(0.951–0.992) 0.018 0.963 (0.926–0.994) 1.000 0.839
 

(0.733–0.925) 0.32 0.929
 

(0.890–0.971) 0.941 (0.896–0.974) 0.895 (0.804–0.980) 0.952 (0.925–0.981)
TRIP + TTA 0.980

 
(0.958–0.996) Reference 0.963 (0.926–0.993) Reference 0.857 (0.750–0.943) Reference 0.934

 
(0.890–0.971) 0.947 (0.897–0.980) 0.897 (0.802–0.983) 0.955 (0.922–0.980)

External SDPH 
cohort

MaxMIL 0.746
 

(0.646–0.815) <0.0001 0.844
 

(0.764–0.899) 1.000 0.436
 

(0.288–0.592) <0.0001 0.746
 

(0.682–0.803) 0.826
 

(0.764–0.890) 0.468
 

(0.266–0.614) 0.835 (0.781–0.876)
AttMIL 0.850

 
(0.761–0.909) <0.0001 0.844

 
(0.778–0.900) 1.000 0.653 (0.510–0.796) <0.0001 0.798

 
(0.720–0.862) 0.885 (0.818–0.936) 0.569

 
(0.409–0.711) 0.864

 
(0.811–0.907)

TRIP 0.909
 

(0.847–0.950) 0.081 0.844
 

(0.781–0.917) 1.000 0.802 (0.673–0.926) 0.18 0.834
 

(0.774–0.898) 0.931 (0.881–0.971) 0.618
 

(0.482–0.750) 0.885 (0.838–0.932)
TRIP + TTA 0.916

 
(0.848–0.959) Reference 0.844

 
(0.774–0.909) Reference 0.851 (0.724–0.951) Reference 0.843 (0.791–0.903) 0.931 (0.896–0.983) 0.618

 
(0.476–0.769) 0.891 (0.851–0.932)

External SRRS cohort
MaxMIL 0.886

 
(0.834–0.926) <0.0001 0.877 (0.829–0.917) 1.000 0.747 (0.664–0.815) <0.0001 0.829

 
(0.783–0.872) 0.854

 
(0.799–0.905) 0.782 (0.699–0.853) 0.865 (0.823–0.900)

AttMIL 0.915 (0.873–0.949) 0.0004 0.877 (0.833–0.923) 1.000 0.805 (0.726–0.878) 0.061 0.850
 

(0.805–0.895) 0.884
 

(0.832–0.921) 0.795 (0.704–0.876) 0.880
 

(0.845–0.918)
TRIP 0.927 (0.894–0.956) 0.0027 0.877 (0.819–0.926) 1.000 0.829

 
(0.761–0.892) 0.17 0.859

 
(0.810–0.893) 0.897 (0.855–0.943) 0.799

 
(0.726–0.889) 0.887 (0.842–0.919)

TRIP + TTA 0.936
 

(0.907–0.962) Reference 0.877 (0.827–0.920) Reference 0.840
 

(0.771–0.913) Reference 0.863 (0.827–0.909) 0.902 (0.855–0.944) 0.801 (0.721–0.867) 0.889
 

(0.855–0.930)
External WHCH

 
cohort

MaxMIL 0.766
 

(0.677–0.882) 0.0011 0.805 (0.750–0.873) 1.000 0.524
 

(0.354–0.758) 0.0014 0.761 (0.699–0.826) 0.901 (0.844–0.962) 0.333 (0.208–0.474) 0.850
 

(0.801–0.895)
AttMIL 0.834

 
(0.762–0.904) 0.083 0.805 (0.743–0.863) 1.000 0.683 (0.468–0.843) 0.31 0.785 (0.726–0.841) 0.932 (0.889–0.971) 0.394

 
(0.270–0.523) 0.863 (0.816–0.901)

TRIP 0.853 (0.773–0.922) 0.35 0.805 (0.751–0.866) 1.000 0.756
 

(0.581–0.892) 0.85 0.797 (0.751–0.856) 0.947 (0.905–0.981) 0.419
 

(0.270–0.557) 0.870
 

(0.835–0.909)
TRIP + TTA 0.860

 
(0.779–0.930) Reference 0.805 (0.749–0.860) Reference 0.768

 
(0.582–0.926) Reference 0.799

 
(0.741–0.852) 0.949

 
(0.909–0.986) 0.423 (0.310–0.555) 0.871 (0.832–0.907)

External TCGA cohort
MaxMIL 0.773 (0.713–0.847) <0.0001 0.830

 
(0.788–0.866) 1.000 0.568

 
(0.443–0.696) <0.0001 0.784

 
(0.739–0.828) 0.901 (0.861–0.933) 0.413 (0.327–0.492) 0.864

 
(0.830–0.892)

AttMIL 0.815 (0.760–0.863) <0.0001 0.830
 

(0.788–0.873) 1.000 0.643 (0.520–0.742) <0.0001 0.798
 

(0.755–0.832) 0.917 (0.886–0.947) 0.444
 

(0.345–0.539) 0.871 (0.841–0.896)
TRIP 0.872 (0.829–0.924) 0.0012 0.830

 
(0.790–0.879) 1.000 0.789

 
(0.678–0.884) 0.092 0.823 (0.790–0.863) 0.949

 
(0.924–0.972) 0.495 (0.406–0.646) 0.886

 
(0.861–0.910)

TRIP + TTA 0.890
 

(0.841–0.929) Reference 0.830
 

(0.791–0.866) Reference 0.798
 

(0.689–0.877) Reference 0.824
 

(0.776–0.860) 0.947 (0.921–0.973) 0.497 (0.407–0.603) 0.887 (0.856–0.908)

Numbers in
 

parentheses indicate 95%
 

confidence intervals (95%
 

CIs). The P-values are employed for a comparison
 

with
 

artificial intelligence (AI) models. We adjust the thresholds of AI models to
 

report the same sensitivity score for a fair 
comparison. Statistical comparisons of area under the receiver operating characteristic curves (AUCs) were performed using DeLong’s test, while sensitivity and specificity were compared using the two-sided McNemar test to

 
evaluate 

significant differences between
 

models. FAH, the First Affiliated Hospital of Zhejiang University. SDPH, Shandong Provincial Hospital. SRRS, Sir Run
 

Run
 

Shaw
 

Hospital of Zhejiang University. WHCH, The Central Hospital of Wuhan. 
TCGA, The Cancer Genome Atlas. PPV, positive predictive value. NPV, negative predictive value.

Table 3: Model performance on triple-negative breast cancer (TNBC) identification.
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We illustrated representative patches within WSIs 
based on our TRIP system in Fig. 4. For TNBC iden-
tification, we found that TNBC tumour cells exhibited 
marked nuclear atypia with pleomorphic, irregular 
nuclei containing vesicular chromatin and prominent 
nucleoli. Moreover, frequent mitotic figures were 
observed, and the neoplastic cells predominantly ar-
ranged in solid nests or sheets, lacking glandular/ 
tubular structures. The stroma demonstrates promi-
nent fibrotic proliferation with collagenous scar for-
mation. Central tumour necrosis is also commonly 
present. For prognosis prediction, TNBC cases with 
poor prognosis compared to those with favourable

prognosis typically demonstrate more prominent 
desmoplastic stroma, exhibit more aggressive infil-
trative growth patterns characterised by interdigitating 
tumour margins, and show less lymphocytic and 
plasma cell infiltration in the interstitium. In addi-
tion, tumour necrosis is also significantly more 
common in the poor-prognosis group. The above 
findings are validated by the quantitative comparison, 
using the geometric and texture features developed 
previously by Yang et al., 36 and in concordance with 
previous studies. 37,38

Finally, to further validate the prognostic pre-
dictions, we conducted integrative multi-omics

Fig. 2: Receiver operator characteristic (ROC) curves for triple-negative breast cancer identification. We compared our TRIP system with/ 
without test-time adaptation (TTA) with two existing multiple instance learning models in the training cohort (A), the internal validation 
cohort (B), and four external validation cohorts (C–F).

Model Disease-free survival Overall survival

FAH EXSURV TCGA Mean FAH EXSURV TCGA Mean

MaxMIL 0.589 ± 0.110 0.525 ± 0.035 0.490 ± 0.025 0.534 0.601 ± 0.105 0.485 ± 0.104 0.487 ± 0.025 0.524
95% CI (0.425–0.743) (0.394–0.649) (0.341–0.601) – (0.406–0.771) (0.326–0.627) (0.374–0.600) –
P-value <0.0001 <0.0001 <0.0001 – <0.0001 <0.0001 <0.0001 –
AttMIL 0.679 ± 0.052 0.632 ± 0.048 0.442 ± 0.017 0.584 0.698 ± 0.034 0.511 ± 0.055 0.379 ± 0.032 0.529
95% CI (0.521–0.806) (0.487–0.733) (0.343–0.587) – (0.553–0.795) (0.344–0.685) (0.270–0.486) –
P-value <0.0001 <0.0001 <0.0001 – <0.0001 <0.0001 <0.0001 –
TRIP 0.713 ± 0.051 0.673 ± 0.042 0.661 ± 0.021 0.682 0.718 ± 0.044 0.665 ± 0.049 0.682 ± 0.031 0.688
95% CI (0.560–0.849) (0.532–0.800) (0.526–0.768) – (0.580–0.823) (0.494–0.827) (0.581–0.782) –
P-value <0.0001 <0.0001 <0.0001 – <0.0001 <0.0001 <0.0001 –
TRIP + TTA 0.747 ± 0.070 0.731 ± 0.047 0.732 ± 0.043 0.737 0.744 ± 0.075 0.720 ± 0.034 0.721 ± 0.030 0.728
95% CI (0.617–0.852) (0.623–0.839) (0.621–0.840) – (0.602–0.865) (0.566–0.865) (0.625–0.818) –
P-value Reference Reference Reference – Reference Reference Reference –

FAH, the First Affiliated Hospital of Zhejiang University. EXSURV, a combined external validation cohort of SDPH, SRRS, and Yiwu Central Hospital cohorts. TCGA, The 
Cancer Genome Atlas. CI, confidence interval.

Table 4: Model performance on disease-free and overall survival analysis for triple-negative breast cancer (TNBC).
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analyses. Integration of multi-omics profiling identified 
three distinct clusters (i.e., C1–C3) each with unique 
transcriptional and pathway activation profiles. Between 
high- and low-risk groups stratified by the prognosis 
prediction from TRIP, 84 upregulated and 32 down-
regulated genes were identified (Fig. 5A) via differential 
gene expression analysis. Then, GSVA-based pathway 
activity (Fig. 5B) revealed that C2 exhibited high activity in 
pathways like HALLMARK_ALLOGRAFT_REJECTION, 
HALLMARK_INTERFERON_GAMMA_RESPONSE, and 
HALLMARK_INTERFERON_ALPHA_RESPONSE, which 
are pivotal in enhancing the immune system, consistent 
with the immunomodulatory subtype of TNBC and 
correlating with better prognosis. Moreover, C3 exhibits 
TNBC mesenchymal subtype-associated epithelial– 
mesenchymal transition (EMT) features and is corre-
lated with poor prognosis, while the HALLMARK_ 
ANDROGEN_RESPONSE pathway in C1 potentially 
linked to the luminal androgen receptor (LAR) subtype. 
Furthermore, as demonstrated by the Kaplan–Meier 
analysis (Fig. 5C), cluster C2 is associated with a

significantly better prognosis compared to clusters C1 and 
C3 (P-values <0.05). 39 These findings confirm that the 
prognostic predictions of our TRIP system are congruent 
with existing molecular findings in the literature. 40,41

Discussion
In this multicentre retrospective study, we developed 
and validated TRIP, an end-to-end deep learning system 
for the automated identification and prognosis predic-
tion of TNBC using routine H&E-stained WSIs. 
Leveraging over 4000 breast cancer cases, including 
more than 1000 patients with TNBC, from five tertiary 
hospitals of China and the TCGA dataset, TRIP dem-
onstrates high diagnostic accuracy (AUC = 0.980 on 
internal, 0.853–0.927 on external cohorts) and consis-
tent prognostic stratification (C-index = 0.720–0.747). 
These results underscore TRIP’s robustness and gen-
eralisability across diverse populations.

Compared to previous WSI-based studies that relied 
on patch-level classifiers, handcrafted features, or

A B C

Fig. 3: Kaplan–Meier analysis for overall survival analysis (the upper panel) and disease-free survival analysis (the lower panel). 
We illustrate the results of our TNBC identification and prognosis prediction (TRIP) system with test-time adaptation (TTA) on the internal 
validation cohort (A), and the external validation cohorts (B–C). The number of censored individuals in each group are in brackets.
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labour-intensive biomarker annotations, 22–27 TRIP in-
troduces several key innovations. First, it employs a 
general-purpose pathology foundation model (GPFM) 31 

to extract robust patch embeddings across staining 
variations. Second, it integrates a bidirectional Mamba-
based encoder 42 module to model long-range spatial 
dependencies and an attention-based aggregation to 
effectively capture global contextual features in WSIs, a 
novel design beyond conventional MIL pooling or 
attention mechanisms. 30 Third, it employs test-time 
adaptation (TTA) 32 to dynamically adjust to distribu-
tion shifts across cohorts, enhancing robustness and 
generalisation during deployment. Collectively, these 
innovations enable TRIP to directly learn TNBC-specific 
morphological and prognostic features in a fully auto-
mated and scalable manner. Furthermore, the retro-
spective WSI data were collected independently at each 
clinical centre according to their routine diagnostic 
workflows without centralised protocol enforcement. As 
H&E staining variability across centres may introduce 
distributional shifts that affect model performance, the 
general pathology foundation model and TTA strategy 
adopted in our system can alleviate this issue. First, the 
pathology foundation models used in our pipeline (e.g., 
GPFM) were pretrained on tens of thousands of WSIs

collected from diverse sources, encompassing a wide 
range of H&E staining protocols, scanners, and in-
stitutions. As a result, the extracted patch embeddings 
are inherently robust to common staining variations, 
reducing the need for additional stain normalisation 
procedures. Second, the TTA strategy fine-tunes the 
normalisation layers in the TRIP system during infer-
ence, while keeping all other model parameters fixed. 
As shown in our validation experiments, this adaptation 
method significantly improves model robustness across 
external cohorts, including those with distinct staining 
and acquisition characteristics.

From a clinical workflow perspective, TRIP can be 
flexibly deployed as (1) a triage tool to prioritise cases 
for confirmatory IHC/FISH testing, (2) a decision-
support aid to validate ambiguous receptor status, or 
(3) a standalone diagnostic system in resource-
constrained settings. In particular, TRIP offers a 
viable alternative in cases where tissue quality or 
availability limits molecular testing, such as poorly fixed 
specimens or emergency diagnoses. Moreover, the 
general pathology foundation model and TTA increase 
TRIP’s generalisability, mitigating performance drops 
from non-standardised data across centres seen in prior 
AI models. Furthermore, its interpretability is

A B NTCBNT ,noitacifitnedi CBNT BC identification, Non-TNBC

D ETNBC without recurrence (134 months )shtnom 31( ecnerrucer htiw CBNT)

0 1Attention score 

HG Surviving TNBC (121 months )shtnom 61( CBNT desaeceD)

C Geometric and texture feature comparison

F Geometric and texture feature comparison

I Geometric and texture feature comparison

Fig. 4: Heatmaps of our TNBC identification and prognosis prediction (TRIP) system on pathology images. The top row shows the 
attention maps of triple-negative breast cancer (TNBC) identification model in TRIP system. We find that TNBC tumour cells exhibit obvious 
nuclear atypia with pleomorphic, irregular nuclei containing vesicular chromatin and prominent nucleoli, while central tumour necrosis is 
commonly present (A), whereas the nuclear atypia of tumour cells is not evident, nuclei is related regular, and tumour necrosis is rare in non-
TNBC specimen (B). The second row exhibits the attention maps of disease-free survival prediction model in TRIP system. Both two samples 
have obvious tumour cell anomalies and rare interstitial lymphocytes and plasma cells, while mitotic activity in the sample with recurrence 
(E) is significantly more than sample with no recurrence (D). The third row illustrates the attention maps of overall survival prediction model 
in TRIP system. It can be observed that large lymphocytic and plasma cell infiltration in the interstitium in TNBC with good prognosis (G), 
while a lack of such patterns indicates poor prognosis (H). In subfigures C, F, and I, we show the comparison results of geometric and texture 
features between two samples on the left.
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enhanced via attention heatmaps, which highlight his-
topathological regions consistent with known TNBC 
phenotypes, such as desmoplastic stroma and high 
mitotic activity. 37,38 These model-localised visual cues 
increase trustworthiness and clinical transparency. In 
addition, TRIP is lightweight enough to be deployed on 
a workstation equipped with a single GPU (e.g., 12 GB 
memory), making it feasible for real-world imple-
mentation in most pathology departments. 

Importantly, TRIP’s prognostic predictions were 
also biologically grounded. Our integrated multi-omics 
analyses revealed three risk clusters with distinct 
immune and tumour-promoting signatures 40,41 — 
corroborating TRIP’s stratifications with molecular 
pathways. In additional subgroup analyses, TRIP 
maintained predictive consistency across different age 
groups and HER2-low expression status, indicating 
resilience to molecular and demographic heterogeneity. 
Although BRCA1/2 mutation status was not available in 
our dataset, future efforts will focus on integrating this 
genomic information for more granular risk modelling. 

Several recent studies have explored the use of WSI-
based deep learning to predict treatment response in 
breast cancer. 43–47 These models typically leverage nu-
clear morphology, spatial TIL architecture, or multi-

stain features to predict pathological complete 
response (pCR) after neoadjuvant chemotherapy. 
While promising, many of these approaches require 
labour-intensive annotations, specialised stains, or 
multi-modal inputs, which limit their scalability and 
real-world adoption. In contrast, TRIP operates directly 
on routine H&E slides without additional preprocess-
ing, annotations, or molecular inputs. Its prognostic 
predictions are derived from a single diagnostic image, 
offering a scalable and interpretable alternative. As 
such, TRIP could support downstream treatment 
stratification and potentially guide de-escalation strate-
gies in low-risk patients with TNBC, particularly in 
settings where complex multi-stage pipelines are 
infeasible.

This study has several limitations. First, our analysis 
was limited to post-resection specimens, excluding core 
needle biopsy (CNB) samples that are more common in 
early-stage diagnostic workflows. While TRIP’s archi-
tecture is compatible with CNB, future validation is 
necessary to assess its efficacy in this setting. Second, 
clinical variables such as age, TNM stage, and Ki-67 
were not incorporated into the model. Although TRIP 
was designed as an image-only system to maximise 
generalisability, incorporating multimodal data may

B

Number at risk

C1
89
(0)

83
(0)

77
(0)

73
(11)

72
(41)

72
(60)

72
(70)

C2
62
(0)

60
(0)

59
(0)

59
(11)

59
(26)

59
(44)

59
(58)

C3
60
(0)

58
(0)

54
(0)

51
(15)

51
(39)

50
(43)

50
(50)

C

A

Fig. 5: Integrated multi-omics analysis of triple-negative breast cancer (TNBC) samples. A. Differential gene expression analysis. Volcano 
plot comparing log2-fold changes (x-axis) versus -log 10(FDR-adjusted P-values) (y-axis) for genes differentially expressed between high-risk 
and low-risk TNBC samples predicted by TNBC identification and prognosis prediction (TRIP) system. Red dots indicate upregulated genes 
(n = 84), blue dots denote downregulated genes (n = 32), and grey dots represent non-significant genes. B. Gene set variation analysis (GSVA) 
pathway activity clustering. Heatmap of mean GSVA scores for Hallmark pathways across risk clusters (C1–C3). Colour changes from blue (low 
activity) to red (high activity) reflect pathway activation patterns. C. Kaplan–Meier analysis for C1–C3. C2 showcases significantly better 
prognosis than C1 and C3. The number of censored individuals in each group are in brackets.
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further enhance prognostic precision. 36 However, due 
to limited availability of complete clinical annotations 
across patients with TNBC, such integration remains 
challenging at present. Third, although we constructed 
the EXSURV cohort by aggregating small external 
validation cohorts to enhance statistical power, residual 
inter-cohort heterogeneity—such as variations in 
staining protocols and scanner devices—remains a 
potential confounding factor. While our model employs 
test-time adaptation to mitigate such distribution shifts, 
it may not fully eliminate centre-specific biases. Lastly, 
TRIP’s clinical impact, particularly in guiding treat-
ment de-escalation strategies, needs prospective vali-
dation. Preliminary results in untreated subgroups 
suggest that TRIP can identify low-risk patients who 
may safely omit adjuvant therapies, but further studies 
are warranted.

Future directions for improving this work include
(1) extending TRIP’s applicability to biopsy settings,
(2) incorporating clinical and genomic data into a 
multimodal framework, and (3) initiating prospective 
validation to assess its real-world clinical utility. With its 
scalability, interpretability, and strong performance, 
TRIP has the potential to assist pathologists in identi-
fying aggressive TNBC cases and tailoring risk-adapted 
treatment strategies.
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