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ABSTRACT
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The emergence of pathology foundation models has revolutionized computational histopathology, enabling highly accurate,
generalized whole-slide image analysis for improved cancer diagnosis, treatment planning, and prognosis assessment. While
these models show remarkable potential across cancer diagnostics and prognostics, their clinical translation faces critical
challenges including variability in optimal model across cancer types, potential data leakage in evaluation, and lack of
standardized benchmarks. Without rigorous, unbiased evaluation, even the most advanced PFMs risk remaining confined to
research settings, delaying their life-saving applications. Existing benchmarking efforts remain limited by narrow cancer-type
focus, potential pretraining data overlaps, or incomplete task coverage. We present PathBench, the first comprehensive
benchmark addressing these gaps through: multi-center in-hourse datasets spanning common cancers with rigorous leakage
prevention, evaluation across the full clinical spectrum from diagnosis to prognosis, and an automated leaderboard system for
continuous model assessment. Our framework incorporates large-scale, clinically diverse data with standardized evaluation
protocols, enabling objective comparison of PFMs while reflecting real-world clinical complexity. All evaluation data comes from
private medical providers, with strict exclusion of any pretraining usage to avoid data leakage risks. We have collected 15,888
whole-slide images (WSlIs) from 8,549 patients across 10 hospitals, encompassing over 64 diagnosis and prognosis tasks.
Currently, our evaluation of 19 PFMs shows that Virchow2 and H-Optimus-1 are the most effective models overall. PathBench’s
dynamic benchmark supports ongoing community contributions through an automated evaluation pipeline. This work provides
researchers with a robust platform for model development and offers clinicians actionable insights into PFM performance across
diverse clinical scenarios, ultimately accelerating the translation of these transformative technologies into routine pathology
practice.

Introduction

Histopathology serves as the cornerstone of modern oncology, guiding critical decisions from diagnosis to therapeutic strategy
selection'™. While convolutional neural networks (CNNs) and vision transformers (ViTs) have demonstrated remarkable
success in computational pathology through supervised learning*, the field now stands at an inflection point with the rise
of pathology foundation models (PFMs). These pre-trained models leverage self-supervised training on massive amounts of
pathological images to learn powerful visual representations’, or employ contrastive learning to align images, text, and even
genetic information to further enhance the model’s multimodal capabilities'*~'2. By pretraining on large-scale diverse data,
PFMs are revolutionizing whole-slide image (WSI) analysis through three key advantages: superior generalization across
institutions and staining protocols, reduced reliance on expensive extensive manual annotations, and emergent capabilities
for multimodal reasoning in diagnostic contexts. The clinical potential of PFMs is evidenced by recent breakthroughs across
multiple cancer types, including gastric inflammation'?, gastrointestinal cancer!#, breast cancer', and other malignancies'®!”.
Notably, these models have demonstrated proficiency not only in classification tasks but also in predicting molecular subtypes,
treatment responses, and patient outcomes directly from histomorphological patterns.

Despite these advances, three critical challenges hinder clinical translation of PFMs. First, optimal architecture and
pretraining strategies show significant variability across cancer subtypes and clinical applications. Second, evaluation method-
ologies may suffer from data leakage or selection bias, particularly when test datasets overlap with pretraining data or share
similar demographic characteristics. Third, the absence of standardized benchmarks makes it difficult to validate performance
claims across real-world clinical settings. These challenges collectively underscore the need for a rigorous, leakage-free, and
sustainable evaluation framework capable of objectively comparing PFM performance across diverse cancer types and clinical
workflows.

While existing benchmarking efforts have made valuable contributions, they face notable limitations. Many rely exclusively
on public datasets that may not reflect clinical diversity and often contain hidden overlaps with model pretraining data'8-20.
Others focus narrowly on specific cancer types like prostate?' or ovarian cancer??, limiting their generalizability. Even the
most comprehensive studies”’ typically evaluate only a subset of clinically relevant tasks, neglecting critical aspects such as
prognosis prediction and other multimodal tasks.

To address these gaps, we present PathBench, the first comprehensive benchmark for PFMs in clinical data across common
cancers. PathBench is designed to evaluate PFM performance on a wide range of tasks—from diagnosis to prognosis—using
large-scale, multi-center datasets that reflect the diversity and complexity of real-world clinical scenarios. The benchmark
data are obtained solely from private medical institutions, and rigorous protocols are employed to guarantee that none of the
data had been exposed to evaluated PFMs during pretraining, thereby eliminating any risk of data contamination. Given the
rapid advancement of PFMs and the growing need for broader cancer type coverage, we also establish a live leaderboard,
hosted on our GitHub repository, to streamline the evaluation of new models and datasets. Model developers can submit their
models and corresponding weights via pull requests, after which our standardized evaluation pipeline automatically assesses
performance on in-house data and updates the leaderboard accordingly. By providing a unified evaluation framework and a
dynamic leaderboard, PathBench aims to accelerate the development and validation of PFMs, enhancing their reliability and
clinical applicability. This benchmark not only enables researchers to compare PFM performance across multiple cancer types
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and tasks but also serves as a critical resource for clinicians and pathologists to assess the real-world utility of these models in
clinical practice.

Results

We evaluated 19 pathology foundation models, including vision-only, vision-language, and multimodal-enhanced architectures
(Figure 1c). To ensure a comprehensive assessment, we tested these models on 64 tasks (Figure 1a) across five major cancer
types: lung cancer (10 tasks), breast cancer (12 tasks), gastric cancer (31 tasks), colorectal cancer (8 tasks), and brain cancer (3
tasks). For each cancer type, we conducted extensive experiments on clinically relevant tasks, including diagnosis, staging,
molecular subtyping, biomarker prediction, and survival analysis (Figure 1b). The evaluation utilized both internal validation
sets and external cohorts to assess model generalizability and robustness across different clinical settings. Among the 64 tasks,
Virchow2, H-optimus- 1, H-optimus-0, UNI2, and mSTAR achieved Top-5 performance, with rank scores of 5.0, 5.9, 6.6, 7.1,
and 7.4, respectively (Figure 1d). Specifically, Virchow2 and H-optimus-1 achieved Top-2 performance in histological subtyping
tasks, while H-optimus-0 and H-optimus-1 excelled in molecular subtyping tasks. UNI2 and CONCH]1.5 demonstrated the
best performance in survival prognosis tasks (Figure 1e). In addition to overall performance, we also examined the models’
effectiveness across different organs. Notably, H-optimus-1 ranked first in lung and colorectal cancer data, whereas Virchow2
performed best in breast, brain, and gastric cancer. Overall, the vision foundation models (e.g., Virchow2 and H-Optimus-1) are
still more effective than vision-language models for the clinical-level tasks.

Lung Cancer

Lung cancer is the leading cause of cancer-related deaths worldwide?*. In our evaluation of lung cancer data, we assessed the
models on 10 tasks, including the classification of primary adenocarcinoma versus metastatic cancer, primary site prediction,
and four molecular subtyping tasks based on H&E slides. Overall, H-optimus-1 achieved the highest average ranking score
of 2.5, followed by Virchow?2 with a score of 4.2 (Figure 2g). For the metastatic cancer classification task on the internal
cohort, all pathology foundation models performed well, with an AUC around 0.97; Virchow?2 achieved the highest AUC of
0.9865. In two external cohorts, mSTAR and Virchow?2 demonstrated the best performance, with AUCs of 0.8811 and 0.9152,
respectively (Figure 2c). To predict the primary site of lung cancer, H-optimus-1 excelled, achieving AUCs of 0.9782 on the
internal cohort and 0.9861 on the external cohort H6 (Figure 2d). Overall, both H-optimus-1 and Virchow?2 are the top models
for metastatic-related tasks. We also investigated the performance of different models on molecular subtyping tasks. The
H-optimus series performed best on three out of four molecular subtyping tasks: CK7 (Figure 2a), C-MET (Figure 2e), and
NapsinA (Figure 2f). Predicting CK7 and NapsinA status proved relatively straightforward, with H-optimus-1 achieving AUCs
of 0.9362 and 0.9781, respectively. In contrast, predicting C-MET status was more challenging; the best-performing model,
H-optimus, achieved an AUC of only 0.7362. For the TTF-1 task, UNI2 performed best with an AUC of 0.996 (Figure 2b),
indicating that TTF-1 status prediction is relatively easy. In summary, for the lung cancer dataset, H-optimus-1 and Virchow?2
are the optimal choices for clinical research and applications.

Breast Cancer

Breast cancer is the most prevalent cancer among women globally. The breast cancer dataset comprises 2,463 patients (4,696
WSIs) from two hospitals and covers 12 tasks, including molecular classification, subtype classification, and survival prediction.
Results are presented in Figures 3 and 4. Overall, Virchow2 demonstrates the best performance across most tasks, with an
average rank of 5.9, closely followed by UNI at an average rank of 6.3 (Figure 4g).

In molecular classification tasks, H-Optimus-1 achieves the highest performance on the internal cohort, with an AUC of
0.938. Conversely, Virchow?2 excels in the external cohort, recording an AUC of 0.8202 (Figure 3c). For diagnostic tasks, we
evaluated the performance of foundation models on the TNM N staging task. Results indicate that Virchow?2 leads with an
accuracy of 0.7949 on the internal cohort, while UNI performs best on the external cohort (Figure 3d). These findings suggest
that predicting TNM N stage from WSIs remains challenging. Additionally, in the pTNM staging task, the top-performing
model, CTransPath, achieves an AUC of only 0.6142, indicating further complexity (Figure 4f). We also assessed these models
across five molecular subtyping tasks: AR, ER, PR, HER2, and CKS5. These tasks present significant challenges, with no single
method consistently outperforming the others. GPFM, H-Optimus-1, MUSK, H-Optimus-0, and UNI2 achieved the highest
performance on AR, ER, PR, HER2, and CKS5, with AUCs of 0.7447, 0.9185, 0.8944, 0.8454, and 0.8481, respectively (Figure
4a-e). Furthermore, we examined the models’ performance in prognosis tasks. CTransPath and UNI2 achieved the best results
for overall survival and disease-free survival analysis, with C-Index of 0.6809 and 0.6697, respectively (Figures 3a-b).

In summary, no single model dominated all tasks in the breast cancer dataset, indicating significant opportunities for
improvement in foundation models applied to breast cancer data.
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Gastric Cancer

To evaluate the performance of foundation models on gastric cancer, we collected 3,684 WSIs from 2,328 patients across four
hospitals, covering 31 tasks. Overall, Virchow2 achieved the best performance, with an average ranking score of 4.7, followed
by H-Optimus-0 at 6.7 (Figure 7i). We first assessed the models on pathological subtyping, Lauren subtyping, and gastric grade
assessment tasks. Virchow2, CONCHL1.5, and UNI2 demonstrated the highest performance with AUCs of 0.8159 (Figure 6b),
0.8161 (Figure 5d), and 0.8834 (Figure 5c) on the internal cohort, respectively. Notably, vision-language models generally
exhibited better generalizability on these tasks. In addition, we evaluated the perineural and vascular invasion detection tasks.
Virchow2 and Phikon2 showed the best average performance on both internal and external datasets. However, all models
performed poorly on the external dataset for the perineural invasion task (Figure 5e). The vascular invasion detection task
proved even more challenging, with no model achieving an AUC above 0.81 on both internal and external cohorts (Figure 6a).
We further investigated the TNM staging tasks, specifically for N stage and T stage prediction. For the T stage, Virchow?2
consistently performed best on the internal cohort (AUC of 0.8226) and two external cohorts (AUCs of 0.7122 and 0.7566)
(Figure 6d). For the N stage, H-Optimus, UNI2, and Phikon2 achieved the best performances on the internal and external
cohorts H3 and H4, with AUCs of 0.8095, 0.7665, and 0.7095, respectively (Figure 6¢). We also evaluated molecular subtyping
tasks, where Virchow?2 performed best on the S-100 marker with an AUC of 0.8502. Predicting the HER-2 biomarker was
more challenging, with the best-performing model, CONCHL1.5, achieving only an AUC of 0.6179. Additionally, we assessed
the models on prognosis tasks. Virchow2 and CONCHI1.5 achieved the best performance in overall survival analysis and
disease-free survival analysis, with C-Indexes of 0.664 and 0.7329, respectively (Figures 7g-h).

Finally, we explored performance on gastric biopsy WSIs. H-Optimus-1 excelled in abnormal slide classification, intestinal
metaplasia detection, and polyp detection, achieving AUCs of 0.9319, 0.9631, and 0.9746 respectively(Figure 7a, 7b and 7e).
For the Helicobacter pylori-associated chronic gastritis task, H-Optimus performed best with an AUC of 0.9676 (Figure 7d). In
the autoimmune chronic gastritis with Helicobacter pylori task, GPFM achieved the best performance with an AUC of 0.8645
(Figure 7c). For ulcer detection, CONCH1.5 was the top model (Figure 7f). Overall, H-Optimus-1 is the best choice for further
research and applications in biopsy data.

Colorectal Cancer

To evaluate foundation model on the colorectal cancer data, we collected 3,080 WSIs from 916 patients. Overall, H-optimus- 1
achieved the best performance with an average ranking score of 4.9, while Virchow?2 ranked second with a score of 5.0 (Figure
81). We assessed these models on staging tasks, including TNM staging, further N staging, and T staging (both coarse-level
and fine-level). No single model consistently outperformed the others across these four tasks (Figure 8a, 8c-e). Specifically,
GPFM performed best on the TNM staging task with an AUC of 0.9272. For the further N staging task, CTransPath achieved
the highest performance with an AUC of 0.9126. In the T staging task, H-optimus-1 excelled in coarse-level classification (2
classes) with an AUC of 0.9291, while PLIP attained the best performance with an AUC of 0.881 in fine-level classification
(4 classes). Additionally, we evaluated the models on consensus molecular subtyping based on WSIs. The best-performing
model, H-optimus-1, achieved an AUC of only 0.7814, indicating that consensus molecular subtyping is a more challenging
task (Figure 8b). We also reported the performance of foundation models on survival prognosis tasks, including overall survival
(OS), disease-free survival (DFS), and disease-specific survival (DSS). Similarly, no model outperformed the others across all
survival prognosis tasks (Figure 8f-h). CTransPath, H-optimus-1, and Virchow2 excelled in OS, DFS, and DSS, with C-Index
values of 0.7570, 0.7375, and 0.7678, respectively. Overall, there is still room for improvement in the foundation models for
colorectal cancer.

Brain Cancer

We investigated foundation models on brain cancer data, focusing on IDH mutation prediction, pathological subtyping, and
WHO grading tasks. To achieve this, we collected 1,362 slides from 677 patients. Overall, H-optimus-1 demonstrated the best
performance with an average ranking score of 2.3, followed by UNI2 with a score of 2.7 (Figure 9d). Specifically, H-optimus-1
excelled in the IDH mutation prediction task, achieving an AUC of 0.9013 (Figure 9a). In the pathological subtyping and WHO
grading tasks, UNI2 outperformed with AUCs of 0.9469 and 0.8724, respectively (Figures 9b-c). Currently, both H-optimus-1
and UNI2 are strong performers in brain cancer analysis.

Discussion

The comprehensive evaluation through PathBench reveals several critical insights into the current state and future directions
of pathology foundation models (PFMs) in computational pathology. Our benchmark demonstrates that while PFMs achieve
remarkable performance across diverse diagnostic and prognostic tasks, their clinical applicability remains organ-specific and
task-dependent. The observed performance variability across cancer types—with Virchow2 dominating gastric and breast
cancer tasks, while H-Optimus-1 excels in lung and colorectal cancer. We highlight the following key findings. First, there is
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Perineural Invasion Detection of Gastric Cancer

Gastric cancer grading results. d. Lauren subtyping results. e. Perineural invasion detection results. The error bars represent the

Figure 5. Overall results of gastric cancer. a-b. The molecular subtyping results of HER-2 and S
standard deviation.
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Figure 8. Overall results on colorectal cancer data. a-e. Staging tasks including TNM, CMS, TNM N, TNM T (4 classes),
and TNM T (early or late stage). f-h. Survival analysis tasks including DFS, OS, and DSS. i. The average ranking score of the

foundation model on the colorectal cancer data. The error bars represent the standard deviation.
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Figure 9. Results on the brain cancer data. a. Results of IDH Mutation prediction task. b. Performance on pathological
subtyping task. c. Performance on the WHO Grading task. d. Average ranking score of various foundation models. The error
bars represent the standard deviation.

still significant room for improvement in vision-language models across most clinical tasks. For example, the best performed
vision-language model CONCHI1.5 ranks 8 among all 19 models. Second, the consistent performance gap between internal and
external validation cohorts underscores the importance of rigorous, leakage-free evaluation, as implemented in PathBench, prior
to clinical deployment. The results highlight the importance of improving the generalization ability of both the feature extractor
and the aggregator. Third, it is worth noting that simply increasing the number of whole slide images and the parameters of
the model remains effective, as evidenced by the top two models (both trained on >1 million WSIs).. In addition, The strong
performance of mSTAR—trained solely on TCGA data yet outperforming vision models trained on larger datasets—suggests
that integrating multimodal knowledge can compensate for limited data.

Our study has several limitations. While PathBench covers five major cancers, it does not yet address rare malignancies
or pediatric tumors. Additionally, the interpretability of PFM decisions—a crucial factor for clinical adoption—remains
unassessed. Future iterations of PathBench will incorporate explainability metrics and expand to include more cancer types
through international collaborations.

The PathBench framework establishes a critical foundation for translating PFMs into clinical practice. By maintaining
a dynamic leader board with automated evaluation pipelines, we enable continuous benchmarking against evolving clinical
standards. This approach addresses a key limitation of static benchmarks in fast-moving Al fields, while our leakage prevention
protocols mitigate inflated performance claims. Moving forward, integration with real-world evidence platforms and prospective
validation in diagnostic workflows will be essential to realizing the full potential of PFMs in precision oncology.

Materials and Methods

1. Dataset

Lung Cancer

(1) Primary Adenocarcinoma and Metastatic Cancer Classification

Distinguishing primary lung adenocarcinoma from metastatic carcinoma is critical for determining appropriate treatment
strategies. To evaluate the performance of existing foundation models on this classification task, we collected a dataset of 846
cases from Hospital H1, comprising 389 primary cancers (686 WSIs) and 457 metastatic cancers (736 WSIs). The data were
label-stratified into training, validation, and test sets at a 7:1:2 ratio. To further validate model robustness, we incorporated two
independent external cohorts:

* Hospital H5 cohort: 237 primary cases (237 WSIs) and 256 metastatic cases (256 WSIs).
* Hospital H6 cohort: 465 primary cases (744 WSIs) and 361 metastatic cases (678 WSIs).

(2) Primary Site Prediction of Metastatic Lung Cancer
For metastatic carcinomas, we curated an additional dataset from Hospital H1 to predict the primary tumor origin. This dataset
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comprised six primary sites: lung (393 cases, 690 WSIs), colorectal (186 cases, 314 WSIs), kidney (25 cases, 36 WSIs), breast
(55 cases, 80 WSIs), and liver (34 cases, 63 WSIs), with a 7:1:2 training-validation-test split. It is worth noting that the lung
site only contains lung adenocarcinoma cases. Additionaly, we also collected data from Hospital HS and H6 for the external
validation as follows:

* Hospital H5: Lung (237 cases, 237 WSIs), breast (50 cases, 50 WSIs), colorectal (96 cases, 96 WSIs), kidney (30 cases,
30 WSIs), and liver (10 cases, 10 WSIs).

* Hospital H6: Lung (273 cases, 487 WSIs), colorectal (141 cases, 279 WSIs), kidney (43 cases, 87 WSIs), breast (63
cases, 104 WSIs), and liver (5 cases, 10 WSIs).

(3) Biomarker Prediction of Lung Cancer

Accurate prediction of biomarkers based on H&E slides can help pathologists have a overall understanding of the tumor
microenvironment and guide treatment decisions. To evaluate the performance of foundation models on biomarker prediction,
we curated data from hospital H1 to perform the prediction of 4 biomarkers: C-MET, CK7, TTF-1, and Napsin A. The label is
derived from the corresponding immunohistochemistry (IHC) results. The details of the dataset are as follows:

L]

C-MET: 195 C-MET negative slides, and 235 C-MET positive slides.

CK7: 248 CK7 negative slides, and 171 CK7 positive slides.

TTF-1: 369 TTF-1 negative slides, and 148 TTF-1 positive slides.
» Napsin A: 263 Napsin A negative slides, and 92 Napsin A positive slides.
The data were label-stratified into training, validation, and test sets at a 7:1:2 ratio.

Breast Cancer

(1) TNM-N Staging of Breast Cancer

Accurate lymph node staging (N stage) is crucial for breast cancer prognosis and treatment planning. To evaluate the performance
of foundation models on this task, we curated a dataset from Hospital H2 and H9, focusing on N stage classification with two
distinct categories: NO (no regional lymph node metastasis) and N+ (presence of lymph node metastases, including both the N1
to N3 substages). The dataset from Hospital H2 includes 343 NO cases (916 slides) and 125 N+ cases (381 slides). For training,
validation and testing, the data are stratified at the case level in a 7:1:2 ratio to avoid potential data leakage. In addition, we also
collected data from Hospital H9 for external validation, which includes 62 NO cases (62 slides) and 23 N+ cases (23 slides).
(2) pTNM Staging of Breast Cancer

Furthermore, we established a dataset for evaluating foundation models in pTNM staging. The dataset are collected from
Hospital H2, which includes 192 stage I cases (451 slides), 232 stage II cases (727 slides), and 43 stage III cases (116
slides). The data were case-level label-stratified into training, validation, and test sets at a 7:1:2 ratio, ensuring proportional
representation of each stage across splits.

(3) Molecular Subtyping of Breast Cancer

Accurate molecular subtyping of breast cancer is essential for personalized treatment strategies and prognostic assessment. To
evaluate the performance of foundation models on this task, we curated datasets from Hospital H2 and H9. The dataset from
Hospital H2 includes 307 Luminal A cases (310 slides), 614 Luminal B1 cases (618 slides), 243 Luminal B2 cases (268 slides),
589 TNBC cases (1,932 slides), and 292 HER-2 cases (323 slides). The data were case-level label-stratified into training,
validation, and test sets at a 7:1:2 ratio. For external validation, we also collected data from Hospital H9, which includes 102
Luminal A cases, 89 Luminal B1 cases, 24 Luminal B2 cases, 101 TNBC cases, and 102 HER-2 cases. Each cases contains
only one slide.

(4) Biomarker Prediction of Breast Cancer

Predicting biomarkers from H&E slides can provide valuable insights and accelerate the diagnosis of breast cancer. To evaluate
the performance of foundation models on biomarker prediction, we curated data from Hospital H2 to perform the prediction of
5 biomarkers: AR, ER, PR, HER2, and CKS5. The details of the dataset are as follows:

* AR: 463 AR negative cases (731 slides), and 677 AR positive cases (841 slides).
* ER: 767 ER negative cases (1,264 slides), and 781 ER positive cases (786 slides).

* PR: 623 PR negative cases (1,108 slides), and 933 PR positive cases (950 slides).
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 HER2: 511 HER2 negative cases (743 slides), and 833 HER?2 positive cases (975 slides).
e CKS: 753 CKS negative cases (859 slides), and 208 CKS positive cases (379 slides).

The data were case-level label-stratified into training, validation, and test sets at a 7:1:2 ratio, ensuring proportional representation
of each biomarker across splits.

(5) Overall Survival Analysis of Breast Cancer

Accurate prediction of overall survival (OS) is essential for guiding treatment decisions and prognostic stratification in breast
cancer. We established a dataset for evaluating foundation models in predicting OS outcomes. The dataset are collected from
Hospital H2 inlcuding 392 censored patients (1,089 slides) and 59 deceased patients (181 slides). The 5-fold cross-validation
was performed to evaluate the model performance. To further avoid the randomness, we also performed 3 times of 5-fold
cross-validation.

(6) Disease Free Survival Analysis of Breast Cancer

Furthermore, we established a dataset for evaluating foundation models in disease-free survival (DFS) outcomes, where
‘recurred’ is the outcome event. The dataset are collected from Hospital H2 inlcuding 380 disease-free patients (1,066 slides)
and 71 recurred patients (204 slides). The 5-fold cross-validation was performed to evaluate the model performance. To further
avoid the randomness, we also performed 3 times of 5-fold cross-validation.

Gastric Cancer

(1) Normal Gastric Biopsy Tissue and Abnormal tissue Classification

Distinguishing normal gastric bioposy tissue including chronic gastritis without Helicobacter pylori infection (normal/CGxHP)
from abnormal tissue is essential for guiding clinical management and treatment decisions. To assess the performance of
computational pathology foundation models on this diagnostic task, we compiled a dataset of 2,700 gastric biopsy slides from
Hospital H7, comprising 733 normal/CGxHP slides and 1,967 abnormal slides. The data were label-stratified into training,
validation, and test sets at a 7:1:2 ratio.

(2) Subtyping of Abnormal Gastric Biopsy Tissues

For the abnormal gastric tissues, we further constructed a more practical multi-label classification task to evaluate the foundation
models. The abnormal tissues from Hospital H7 contains 4 classes, including Helicobacter pylori-associated chronic gastritis
(HPACG, 223 slides), Autoimmune chronic gastritis with Helicobacter pylori (ACGxHP, 185 slides), Gastric polyps (144
slides), and Gastric ulcers (111 slides). Since one slide may correspond to multiple labels, we perform binary classification for
each class. These slides were stratified by pathological labels into training (70%), validation (10%), and test sets (20%).

(3) Binary Classification of Gastric Intestinal Metaplasia

Detecting intestinal metaplasia (IM) from non-IM gastric biopsy tissue is critical for early detection of precancerous lesions
and risk stratification in gastric cancer screening. To evaluate the performance of foundation models on this diagnostic task, we
curated a dataset of 2,700 gastric biopsy slides from Hospital H7, comprising 2,430 non-IM slides and 270 IM slides. The data
were label-stratified into training, validation, and test sets at a 7:1:2 ratio, ensuring proportional representation of IM cases
across splits.

(4) Histopathological Grading Assesment of Gastric Cancer

Gastric cancer grading is a critical component of pathological assessment, reflecting the degree of tumor cell differentiation and
correlating with biological behavior and prognosis. To evaluate foundation models for this task, we compiled a multi-institutional
dataset. From Hospital H1, we included 318 poorly differentiated (G3) cases (319 slides) and 81 well/moderately differentiated
(G1+G2) cases (82 slides), with a 7:1:2 ratio split for training, validation, and testing. Additionally, we incorporated two
additional cohorts for external validation: Hospital H3 contributed 190 G3 cases and 55 G1+G2 cases, while Hospital H4
provided 258 G3 cases and 62 G1+G2 cases.

(5) HER?2 Status Prediction of Gastric Cancer

Accurate HER?2 status prediction is critical for guiding targeted therapy decisions in gastric cancer. To evaluate foundation
models for this task, we compiled a multi-center dataset of 675 H&E-stained slides from Hospitals H1, H3, and H4, with HER2
labels derived from corresponding Immunohistochemistry (IHC) results. The dataset includes 549 negative cases (IHC 0/1+)
and 126 non-negative cases (IHC 2+/3+). Data were stratified into training (70%), validation (10%), and test sets (20%) while
preserving the original class distribution.

(6) S-100 Protein Expression Prediction of Gastric Cancer

S-100 protein expression in gastric cancer has been associated with tumor differentiation, neuroendocrine differentiation, and
potential prognostic implications. To evaluate the ability of computational pathology models in predicting S-100 status from
H&E-stained slides, we compiled an multi-center dataset from Hospital H1 and H3. The dataset contains 90 IHC O slides and
270 IHC 1+ slides. The dataset were label-stratified into training, validation, and testing sets at a ratio of 7:1:2.

(7) Lauren classification of Gastric Cancer

The Lauren classification system is pivotal in gastric cancer prognostication and therapeutic decision-making, categorizing
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tumors into distinct histomorphological subtypes with differing biological behaviors. To evaluate foundation models for this
critical task, we constructed a multi-center dataset encompassing three Lauren subtypes: Diffuse type, Intestinal type, and
Mixed type. For the internal cohort, the dataset comprised 388 cases from Hospital H1 including 159 diffuse cases (160 slides),
102 intestinal cases (103 slides), and 127 mixed cases (127 slides). All data were label-stratified into training (70%), validation
(10%), and test sets (20%), with subtype proportions preserved across splits. To ensure generalizability, two independent
external datasets were included:

* Hospital H3: 141 slides (77 Diffuse, 33 Mixed, 31 Intestinal)
* Hospital H4: 319 slides (143 Diffuse, 86 Mixed, 90 Intestinal)

(8) Pathological Subtyping of Gastric Cancer

Accurate classification of gastric cancer pathological subtypes is essential for prognostic stratification and therapeutic planning.
To evaluate foundation models on this task, we curated a dataset from Hospital H1 including 163 Signet Ring Cell Carcinoma
(163 slides), 166 Tubular Adenocarcinoma (167 slides), and 66 non-specified Stomach Adenocarcinoma (67 slides). The
internal data were stratified into training (70%), validation (10%), and test sets (20%) while preserving subtype proportions.
Additionally, to assess model generalizability, we also adopted data from Hospital H3 and H4 as the external validation.

» Hospital H3: 233 Stomach Adenocarcinoma, 82 Signet Ring Cell
» Hospital H4: 195 Stomach Adenocarcinoma, 59 Signet Ring Cell

(9) Detection of Perineural Invasion in Gastric Cancer

Perineural invasion (PNI) is an important prognostic factor in gastric cancer associated with increased recurrence risk and
poor survival outcomes. To evaluate foundation models for this critical histopathological feature, we compiled a dataset with
standardized PNI assessment from Hospital H1, consisting of 255 PNI-positive cases (256 slides) and 141 PNI-negative cases
(142 slides). The internal data were stratified into training (70%), validation (10%), and test sets (20%) while maintaining the
original PNI positivity rate. we also included two independent cohort from Hospital H3 and H4 as the external validation as
follows:

» Hospital H3: 156 PNI-positive slides and 76 PNI-negative slides
» Hospital H4: 112 PNI-positive slides and 207 PNI-negative slides

(10) Detection of Vascular Invasion in Gastric Cancer

Vascular invasion (VI) is a critical histopathological feature in gastric cancer that correlates with hematogenous metastasis
risk and guides adjuvant therapy decisions. To assess foundation models for VI identification, we established a dataset with
balanced representation of positive and negative cases from Hospital H1. The internal cohort contained 197 VI-positive cases
(198 slides) and 198 VI-negative cases (199 slides). To validate the robustness of evaluted models, we included another two
cohort from Hospital H3 and H4 as the external validation as follows:

* Hospital H3: 90 VI-negative and 140 VI-positive slides
* Hospital H4: 197 VI-negative and 122 VI-positive slides

The internal data were stratified into training (70%), validation (10%), and test sets (20%) while preserving the balanced class
distribution.

(11) N Staging Classification in Gastric Cancer

Accurate nodal status (N stage) determination is crucial for gastric cancer prognosis and treatment planning. We developed a
clinically relevant binary classification task distinguishing node-negative (NO) from node-positive (N+, encompassing N1-N3)
cases to evaluate foundation models’ performance in this critical diagnostic task. The internal dataset comprised 212 N+ cases
(212 slides) and 186 NO cases (188 slides). For the external validation, we include two cohorts from Hospital H3 and H4 as
follows:

* Hospital H3: 175 N+ slides and 85 NO slides
* Hospital H4: 175 N+ slides and 145 NO slides
All internal data were stratified into training (70%), validation (10%), and test sets (20%) while preserving the original

NO/N+ ratio.
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(12) T Staging Classification in Gastric Cancer

Precise assessment of tumor invasion depth (T stage) is fundamental for gastric cancer treatment stratification and surgical
planning. We evaluated foundation models on this critical four-class classification task (T1-T4) using a multi-institutional
dataset. The internal dataset was collected from Hospital H1 comprising 115 T1 slides (115 cases), 55 T2 slides (54 cases), 121
T3 slides (121 cases), and 107 T4 slides (106 cases). To assess generalizability across different hospitals, we collected two
cohorts from Hospital H3 and H4 for external validation as follows:

» Hospital H3: 260 slides (33 T1, 35 T2, 75 T3, 117 T4)
» Hospital H4: 320 slides (64 T1, 46 T2, 125 T3, 85 T4)

All internal data were stratified into training (70%), validation (10%), and test sets (20%) while preserving T-stage proportions.
(13) Disease Free Survival Analysis of Gastric Cancer

Prognostic prediction of disease recurrence is crucial for postoperative surveillance and adjuvant therapy planning in gastric
cancer. We established a dataset for evaluating foundation models in predicting disease-free survival (DFS) outcomes based
on WSIs. The dataset are collected from Hospital H3 comprising 260 slides from 260 cases: 157 disease-free patients and
103 recurred patients. The 5-fold cross-validation was performed to evaluate the model performance. To further avoid the
randomness, we also performed 3 times of 5-fold cross-validation.

(14) Overall Survival Analysis of Gastric Cancer

Accurate prediction of overall survival (OS) is essential for guiding treatment decisions and prognostic stratification in gastric
cancer. We established a dataset for evaluating foundation models in predicting OS outcomes. The dataset are collected
from Hospital H3 comprising 260 slides from 260 cases: 172 censored patients and 88 uncensored patients. The 5-fold
cross-validation was performed to evaluate the model performance. To further avoid the randomness, we also performed 3
times of 5-fold cross-validation.

Colorectal Cancer

(1) Lymph Node Staging (N Stage) in Colorectal Cancer

Lymph node metastasis in colorectal cancer, a critical component of TNM staging that significantly impacts treatment planning
and outcome prediction. To evaluate the performance of foundation models in this task, we curated a data set from Hospital HS,
focusing specifically on N-stage classification with two distinct categories: NO (no regional lymph node metastasis) and N+
(presence of lymph node metastases, including both the N1 and N2 substages). The collection comprises 367 NO cases (1,848
slides) and 230 N+ cases (871 slides). For training, validation and testing, the data are stratified at the case level in a 7:1:2 ratio
to avoid potential data leakage.

(2) Tumor Invasion Depth (T Stage) in Colorectal Cancer (2 classes)

Tumor invasion depth (T stage) is a key determinant in colorectal cancer prognosis and treatment strategy, distinguishing
between early-stage (T1+T2) and advanced local invasion (T3+T4). To assess foundation models’ capability in this diagnostic
task, we compiled the a dataset from Hospital H8, grouping cases into two clinically relevant categories: T1+T2 (tumor confined
to bowel wall) and T3+T4 (tumor extending beyond muscularis propria). It contains 519 T3+T4 cases (2,391 slides) and 76
T1+T2 cases (319 slides). The data is rigorously case-level split into training (70%), validation (10%), and test sets (20%) to
ensure clinically meaningful evaluation.

(3) Tumor Invasion Depth (T Stage) in Colorectal Cancer (4 classes) To further challenge the models’ discriminative
capabilities, we extended the task to fine-grained T-stage prediction (T1, T2, T3, T4). This 4-class classification problem
reflects the full spectrum of tumor invasion depth, demanding higher precision from the models. The dataset includes 595 cases
(2,710 slides) with the following distribution: 20 T1 (71 slides), 26 T2 (244 slides), 440 T3 (2,130 slides), and 79 T4 (261
slides). Consistent with the 2-class task, we applied a case-level split (training:validation:testing = 7:1:2) to maintain evaluation
integrity and prevent data leakage.

(4) TNM Staging of Colorectal Cancer

Accurate TNM staging is fundamental for colorectal cancer management, directly guiding therapeutic decisions and prognostic
evaluation. To evaluate foundation models in this task, we curated a dataset from Hospital HS including 63 stage I cases (263
slides), 288 stage II cases (1535 slides), 135 stage III cases (633 slides), and 120 stage IV cases (120 slides). The data were
case-level stratified into training, validation, and testing at a ratio of 7:1:2.

(5) Consensus Molecular Subtyping in Colorectal Cancer

Consensus molecular subtyping in colorectal cancer is crucial for precision oncology and treatment stratification. To evalute the
performance of foundation models in this task, we curated a dataset from Hospital H8 containing 588 molecularly-characterized
cases classified into four Consensus Molecular Subtypes (CMS): 76 CMS1 (372 slides), 239 CMS2 (1061 slides), 86 CMS3
(393 slides), and 187 CMS4 (857 slides). For training, validation, and testing, the data were case-level stratified at a ratio of
7:1:2.
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(6) Disease Free Survival Analysis of Colorectal Cancer

Accurate prediction of disease-free survival (DFS) is crucial for postoperative surveillance and adjuvant therapy planning in
colorectal cancer. We established a dataset for evaluating foundation models in predicting DFS outcomes based on WSIs. The
dataset are collected from Hospital H8 comprising 2,779 slides from 608 cases. It contains 389 disease-free patients (1,874
slides) and 219 recurred/progressed patients (904 slides). The 5-fold cross-validation was performed to evaluate the model
performance. To further avoid the randomness, we also performed 3 times of 5-fold cross-validation.

(7) Disease Specific Survival Analysis of Colorectal Cancer

We further established a dataset for evaluating foundation models in disease-specific survival (DSS) outcomes based on WSIs.
The dataset are collected from Hospital H1 inlcuding 294 patients (301 slides). It contains 252 living, or dead but tumor-free
patients (259 slides) and 42 dead patients with tumor (42 slides). The 5-fold cross-validation was performed to evaluate the
model performance. To further avoid the randomness, we also performed 3 times of 5-fold cross-validation.

(8) Overall Survival Analysis of Colorectal Cancer

Finally, we established a dataset for evaluating foundation models in overall survival (OS) outcomes based on WSIs. The
dataset are collected from Hospital HS inlcuding 608 patients (2,779 slides). It contains 440 living patients (2,081 slides) and
168 deceased patients (698 slides). The 5-fold cross-validation was performed to evaluate the model performance. To further
avoid the randomness, we also performed 3 times of 5-fold cross-validation.

Brain Cancer

(1) Histopathological Subtyping of Glioma Accurate classification of glioma subtypes is critical for precise diagnosis and
treatment planning in neuro-oncology. To evaluate the performance of computational pathology models on this task, we
constructed a dataset comprising 1,353 WSIs from 673 cases collected at Hospital H1. The dataset includes four major glioma
subtypes: 274 Glioblastoma cases (558 slides), 231 Diffuse astrocytoma cases (450 slides), 132 Oligodendroglioma (269
slides), and 36 Diffuse midline glioma (76 slides). The data were label-stratified into training (70%), validation (10%), and test
sets (20%).

(2) WHO Grading of Glioma This task is designed for automated WHO grading of gliomas, a critical determinant of clinical
management and prognosis in neuropathology. This dataset comprises 1,350 WSIs from 672 cases collected at Hospital H1,
covering three WHO grades: 310 Grade 4 cases (634 slides), 117 Grade 3 cases (234 slides), and 245 Grade 2 cases (482
slides). The dataset is lebel-stratified into training, validation, and testing at a ratio of 7:1:2.

(3) IDH Mutation Prediction of Glioma Isocitrate dehydrogenase (IDH) mutation is a critical molecular marker with
diagnostic, prognostic, and therapeutic implications in glioma management. To evaluate the potential of pathology foundation
models in predicting mutation status from histopathological WSIs, we constructed a dataset comprising 1,341 slides from 667
cases collected from Hospital H1, categorized into two classes: 275 IDH-mutant cases (562 slides) and 392 IDH-wildtype cases
(779 slides). The data is label stratified into a training, validation, and test sets at a ratio of 7:1:2.

2. Model

PathBench seeks to create a dynamically updatable evaluation platform for ongoing validation. As of March 2025, we have
included 19 pathology foundation models that have publicly released their model weights, which can be categorized into three
types: 1) Vision-only models, which are pretrained on pathological images only, 2) Vision-Language models, which leverage
the paired data of pathological images and textual descriptions for pretraining, and 3) Multimodal models, which are enhanced
by extra pathology-related modalities data. The details of PFMs information are summarized in Table 1. Notably, we will
continuously update the benchmark by incorporating additional PFMs once their weights are publicly released.

(1) Vision-only PFM. Prior to the era of foundation models, ResNet50> pretrained on ImageNet was widely applied in
the computational pathology community. Therefore, we include it as a baseline for validation. As a pioneering model in
this field, CTransPath?® first leveraged the MoCo-v3*? strategy for pre-training on over 30K publicly available H&E slides.
Building upon the iBOT framework, Phikon®’ empirically validated Vision Transformer’s** (ViT) ability to derive pan-cancer
representation learning. As a groundbreaking work, UNI?® introduced the first model pre-trained on over 100,000 WSIs using
DINOV2 framework*. Additionally, it brought the issue of data contamination to the forefront, and established a robust
evaluation benchmark across 34 representative pathological tasks to mitigate contamination risks. Recently, both Phikon
and UNI have introduced their advanced versions, Phikon2*> and UNI2, by enlarging the pretraining data scale and THC
staining data. Virchow?’ first scaled pretraining data to the million-level while expanding the model architecture to ViT-H/14.
Furthermore, Virchow?2 pushed the boundary of PEM again by extending the pretraining data to over 3 million slides, resulting
in the largest model in this field with 1.9B parameters (ViT-G/14). With the remarkable success of the DINOv2 framework in
CPath community, Hibou-L3!, H-Optimus-0 and H-Optimus-1 have consistently employed this architecture on over 1 million
slides. Building upon these powerful PFMs, GPFM?>? incorporates the strengths of diverse PFMs by distilling their knowledge
into a generalizable pathology foundation model. Beyond patch extractors pretraining, Prov-GigaPath first broadened the scope
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Table 1. Pathology Foundation Models included in PathBench. MedIA, NM and NBME refer to Medical Image Analysis,
Nature Medicine and Nature Biomedical Engineering, respectively. All parameter counts are based on actual measurements
from the released model weights.

PFM ‘ #Slides ‘ #Patches ‘ Params. ‘ Architecture ‘ Pretraining Strategy ‘ Pretraining Data Source ‘ Stain ‘ Released Date ‘ Publication
Vision-only
ResNet50% ‘ - ‘ - ‘ 8.5M ‘ ResNet-50 ‘ Supervised Learning ‘ ImageNet-1K ‘ - ‘ Jun-16 ‘ CVPR
CtransPath®® | 32220 | 156M | 27.8M | Swin-T/14 | MoCov3 | TCGA, PAIP | H&E | Ju-22 | MedlA
Phikon” | 6,093 | 434M | 864M | ViT-B/I6 | iBOT | TCGA | H&E | 26-Jul-23 | Preprint
UNIZ | 100426 | 100M | 303M | ViT-L/16 | DINOv2 | GTEx, In-house | H&E | 29-Aug23 | NM
Virchow? | 1488550 | 20B | 63IM | ViT-H/14 | DINOv2 \ In-house | H&E | 14Sep23 | NM
Prov-GigaPath®® | 171K | 14B | LIB | ViT-G/14 | DINOv2,MIM | In-house | H&E,IHC | 22-May-24 | Nature
Hibou-L3' | 1IM | 12B | 304M | ViT-L/14 | DINOv2 \ - | H&E, others |~ 7-Jun-24 |  Preprint
GPFM* | 72280 | 190M | 303M | ViT-L/14 | Custom | 33 Public datasets | H&E | 26-Jul-24 | NBME
Virchow2® | 3,134922 | 20B | 63IM | ViT-H/14 | DINOv2 | In-house | H&E,THC | 1-Aug-24 | Preprint
H-Optimus-0* | 500K | - | 1IB | ViTG/14 | iBOT,DINOv2 | - \ - |  8-Aug24 | -
Phikon2® | 58359 | 456M | 303M | VIT-L/16 | DINOv2 \ 132 Public datasets | H&E,IHC | 13-Sep-24 | Preprint
UNI2? | 350K | 200M | 68IM | ViT-H/14 | DINOv2 \ GTEXx, In-house | H&E,IHC | 14-Jan25 | NM
H-Optimus-1% | 1M | 20B | LIB | VIiTG/4 | - \ - \ - | 1-Feb-25 | -
Vision-Language
PLIPY’ | - | 208K | 879M | ViT-B/32 | CLIP | Tweets, Replies, LAION-5B | H&E,IHC | 17-Aug23 | NM
CONCH* | 21442 | L17M | 904M | ViT/B-16 |  iBOT.CoCa | PubMed, EDU, In-house | H&E,IHC | 24-ul23 | NM
CHIEF® ‘ 60,530 ‘ ; ‘ 27.8M ‘ Swin-T/14 ‘ CLIP ‘ § public datasets, ‘ H&E ‘ 4-Sep-24 ‘ Nature
6 in-house datasets
CONCHL5*® | - | 126M | 306M | VIiT-L/6 | CoCa | - | HXE,THC |  Nov-24 | -
MUSK* ‘ 33K ‘ M ‘ 675M ‘ VIT-L/16 ‘ BEIT3 ngfyf&’;ggﬁést ‘ H&E ‘ 8-Jan-25 ‘ Nature
Multimodal-enhanced
mSTAR* | 22,127 | 116M | 303M | ViT-L/16 | Custom | TCGA | H&E | 22-Jul-24 | Preprint
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of modelling into whole slides.

(2) Vision-Language PFMs. As the seminal vision-language foundation model in pathology, PLIP*’ leveraged extensive
pathological image-text pairs collected from Twitter, replies and LAION-5B* to pretrain a model based on CLIP*® framework.
CONCH?® crawled a substantial collection of image-text pairs from high-quality PubMed and educational sources, while
additionally incorporating proprietary in-house datasets comprising paired pathology reports and electronic medical records
for pretraining based on CoCa*’ framework. Recently, CONCH has released the advanced version, CONCH1.5, with more
pretraining data and a larger model. CHIEF designed a CLIP-like variant by leveraging the textual description of sites
pretrained on over 60k slides. Furthermore, MUSK developed a multimodal transformer with unified masked modelling for
vision-language modelling based on BEiT3 architecture.

(2) Multimodal PFMs. Beyond the modalities of vision and language, multimodal PFMs aim to incorporate more pathology-
related modalities to enhance their capability of pathological image modelling. In this work, we involve mSTAR*!, a whole-slide
PFM, enhanced by pathology reports and gene expression data. Recently, more multimodal PFMs continue to emerge, such
as THREADS*®, which is boosted by genomic and transcriptomic profiles. However, due to unavailable model weights, they
have not yet been included at this stage. We will maintain ongoing monitoring and will dynamically incorporate them into our
updatable evaluation platform once their models are released.

3. Standardized Preprocessing

To ensure fair and reliable comparisons across heterogeneous WSI datasets, we established a standardized preprocessing
pipeline addressing three key aspects: resolution variability, processing efficiency, and reproducibility. Our preprocessing
approach consisted of the following steps:

* Foreground extraction: We exclusively analyzed foreground tissue patches, excluding background regions. Using
consistent parameters for tissue detection ensured reproducibility across datasets. For slides with faint staining that
challenged automated detection, we excluded them entirely rather than relying on manual annotations, thus maintaining
methodological consistency.

* Patch extraction: All WSIs were processed at the base level (level 0), with patch dimensions scaled according to
magnification: 512 x 512 pixels for 40x WSIs and 1024 x 1024 pixels for 80x WSIs. This configuration maintained a
consistent tissue coverage of 0.25 um?/pixel across all samples.

* Model-specific adaptations: When implementing baseline models, we strictly followed their original specifications. For
instance, with the MUSK model*’, we incorporated their recommended multiscale augmentation strategies as provided
in the official implementation.

4, Evaluating Protocols

Paradigm

Downstream tasks in this benchmark can be typically categorized into 2 types: 1) classification and 2) survival prediction. To
fully demonstrate the capabilities of PFMs, we adopt the conventional two-stage multiple instance learning (MIL) paradigm for
slide-level tasks. Following the mainstream evaluation strategy>®2°, ABMIL" is employed as an MIL aggregator to merge all
patch features of a WSI into a slide-level representation using attention-based weighting, which is trained from scratch for
every downstream task given patch features extracted by various PFMs. The details of training hyperparameters can be found in
Table 26, which are kept consistently for different PFMs to guarantee fair comparison.

Data Split

Both internal and external validation are employed for robust and generalizable evaluation. To maintain statistically valid
assessments, for classification, the dataset for each task is split into training, validation, and test sets in a 7:1:2 ratio on every
internal cohort, with experiments repeated 10 times using different random seeds. All 10 models generated from the repeated
training process are subsequently assessed on external datasets to validate generalizability. For survival prediction, we adopt
5-fold cross-validation repeated 3 times experiments to achieve reliable comparisons given different seeds, resulting in 15 times
repeated runs for each dataset. Similarly, all models trained across every fold and every seed are used for inference on external
datasets.

Statistical Analysis
To rigorously evaluate whether the observed assessment results demonstrate statistically significant differences, we apply
non-parametric 1000 times bootstrapping for every experimental run. As a result, 10,000 and 15,000 bootstrap replicates are
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employed under the aforementioned data splits to estimate 95% confidence intervals (CI) for every classification and survival
task, respectively. For the best-performing model on every task, we estimate if it has a statistical difference from every other
model via the one-sided Wilcoxon signed-rank test’!, and P-value is subsequently reported.

Metrics

For classification tasks, we report the AUC and its 95% CI, which is a common metric used in classification independent
of the decision threshold choice and remains unaffected by variations in class imbalance. For survival tasks, Concordance
Index (C-Index) is commonly adopted, which represents the probability that, when two individuals are randomly chosen, their
predicted risks will be ranked correctly.
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Supplementary information

Table 2. The in-house data used for the benchmark.

Organ Source Cohort Case Number Slides Number
Lung H1 Metastatic-Cohort 846 1,422
Lung H5 Metastatic-Cohort 493 493
Lung H6 Metastatic-Cohort 826 1,422
Stomach H7 Biopsy-Cohort 1,345 2,700
Stomach H1 Gastric-Cohort 403 404
Stomach H4 Gastric-Cohort 320 320
Stomach H3 Gastric-Cohort 260 260
Colorectal H8 Colorectal-Cohort 622 2,779
Colorectal H1 Colorectal-Cohort 294 301
Breast H9 Breast-Cohort 418 421
Breast H2 Breast-Cohort 2,045 4,275
Brain H1 Glioma-Cohort 677 1,362

Table 3. Performance of the evaluated models on the classification of primary and metastatic lung cancer task. One internal
dataset (H1) and two external datasets (H5 and H6) are used for evaluation. The mean AUC and the 95% confidence interval

are reported.

Model

Internal (H1)

External (H5)

External (H6)

ResNet50
UNI

UNI2
CONCH
CHIEF
GPFM
mSTAR
Virchow?2
CONCHL1.5
Phikon
CTransPath
Phikon2
PLIP
Prov-GigaPath
Virchow
H-Optimus-0
H-Optimus-1
MUSK
Hibou-L

0.8835 (0.8236-0.9329)
0.9785 (0.9579-0.9932)
0.9805 (0.9579-0.9948)
0.9763 (0.9524-0.9922)
0.9755 (0.9541-0.9914)
0.9815 (0.9614-0.9949)
0.9815 (0.9599-0.9951)
0.9846 (0.9676-0.9960)
0.9783 (0.9579-0.9929)
0.9822 (0.9595-0.9968)
0.9763 (0.9560-0.9913)
0.9835 (0.9602-0.9972)
0.9528 (0.9189-0.9799)
0.9855 (0.9658-0.9974)
0.9756 (0.9524-0.9921)
0.9828 (0.9630-0.9952)
0.9865 (0.9717-0.9962)
0.9688 (0.9380-0.9896)
0.9773 (0.9546-0.9938)

0.6497 (0.5824-0.7129)
0.8690 (0.8253-0.9082)
0.8743 (0.8359-0.9116)
0.8610 (0.8190-0.8990)
0.8372 (0.7942-0.8772)
0.8595 (0.8209-0.8974)
0.8811 (0.8371-0.9166)
0.8686 (0.8278-0.9070)
0.8592 (0.8125-0.9030)
0.8718 (0.8326-0.9093)
0.8428 (0.8010-0.8825)
0.8676 (0.8297-0.9018)
0.8177 (0.7403-0.8772)
0.8413 (0.7904-0.8824)
0.8221 (0.7385-0.8771)
0.8342 (0.7849-0.8808)
0.8513 (0.8051-0.8965)
0.8079 (0.7606-0.8529)
0.7905 (0.7395-0.8391)

0.6819 (0.6393-0.7225)
0.8968 (0.8601-0.9235)
0.8932 (0.8635-0.9189)
0.8744 (0.8434-0.9000)
0.8339 (0.8030-0.8630)
0.8963 (0.8705-0.9204)
0.9034 (0.8674-0.9277)
0.9152 (0.8902-0.9371)
0.8683 (0.8401-0.8937)
0.8657 (0.8321-0.8951)
0.8680 (0.8415-0.8922)
0.8914 (0.8596-0.9175)
0.7619 (0.7108-0.8038)
0.8849 (0.8531-0.9143)
0.8575 (0.8239-0.8880)
0.9076 (0.8762-0.9374)
0.9088 (0.8845-0.9307)
0.8157 (0.7768-0.8502)
0.8453 (0.8106-0.8814)
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Table 4. Performance of the evaluated models on the task of predicting primary site of lung cancer. One internal dataset (H1)
and two external datasets (HS and H6) are used for evaluation. The mean AUC and the 95% confidence interval are reported.

Model

Internal (H1)

External (H5)

External (H6)

ResNet50
UNI
UNI2
CONCH
CHIEF
GPFM
mSTAR
Virchow?2

CONCHL.5

Phikon

CTransPath

Phikon2
PLIP

Prov-GigaPath

Virchow

H-Optimus-0
H-Optimus-1

MUSK
Hibou-L

0.8610 (0.7998-0.9142)
0.9742 (0.9503-0.9903)
0.9735 (0.9493-0.9904)
0.9622 (0.9328-0.9850)
0.9421 (0.9022-0.9720)
0.9711 (0.9470-0.9883)
0.9738 (0.9494-0.9902)
0.9713 (0.9402-0.9896)
0.9671 (0.9343-0.9884)
0.9560 (0.9248-0.9818)
0.9525 (0.9230-0.9757)
0.9660 (0.9370-0.9865)
0.9147 (0.8747-0.9510)
0.9736 (0.9523-0.9893)
0.9600 (0.9278-0.9833)
0.9695 (0.9232-0.9948)
0.9782 (0.9447-0.9963)
0.9459 (0.9158-0.9712)
0.9456 (0.9017-0.9752)

0.6927 (0.6423-0.7377)
0.9417 (0.9153-0.9629)
0.9555 (0.9350-0.9725)
0.9379 (0.9141-0.9576)
0.9108 (0.8803-0.9373)
0.9341 (0.9045-0.9581)
0.9469 (0.9210-0.9680)
0.9445 (0.9166-0.9664)
0.9327 (0.8993-0.9591)
0.9294 (0.9008-0.9524)
0.9160 (0.8840-0.9416)
0.9150 (0.8823-0.9432)
0.8611 (0.8314-0.8887)
0.9308 (0.9043-0.9531)
0.9391 (0.9095-0.9599)
0.9484 (0.9208-0.9692)
0.9533 (0.9333-0.9697)
0.9062 (0.8805-0.9291)
0.8878 (0.8374-0.9241)

0.8162 (0.7704-0.8541)
0.9777 (0.9670-0.9866)
0.9830 (0.9740-0.9896)
0.9795 (0.9692-0.9877)
0.9478 (0.9271-0.9649)
0.9742 (0.9606-0.9833)
0.9796 (0.9704-0.9875)
0.9840 (0.9755-0.9908)
0.9726 (0.9601-0.9832)
0.9730 (0.9611-0.9832)
0.9537 (0.9391-0.9668)
0.9655 (0.9484-0.9781)
0.8911 (0.8591-0.9238)
0.9786 (0.9688-0.9867)
0.9744 (0.9628-0.9838)
0.9859 (0.9786-0.9918)
0.9861 (0.9785-0.9917)
0.9514 (0.9357-0.9662)
0.9375 (0.8798-0.9661)

Table 5. Performance of the evaluted models on the biomarker prediction tasks in the lung cancer dataset. The mean AUC and
the 95% confidence interval are reported.

Model C-Met (H1) CK7 (H1) TTF-1 (HI) NapsinA (H1)

ResNetS0 0.5541 (0.4304-0.6782)  0.6724 (0.5484-0.7885)  0.8726 (0.7917-0.9401)  0.8868 (0.7848-0.9636)
UNI 0.6643 (0.5261-0.7870)  0.9248 (0.8438-0.9856)  0.9645 (0.9018-0.9957)  0.9426 (0.8693-0.9894)
UNI2 0.5617 (0.4269-0.6985)  0.9211 (0.8347-0.9836)  0.9960 (0.9796-1.0000)  0.9695 (0.9149-0.9987)
CONCH 0.5671 (0.4289-0.7150)  0.9103 (0.8282-0.9738)  0.9644 (0.9081-0.9982)  0.9083 (0.8250-0.9696)
CHIEF 0.5912 (0.4563-0.7170)  0.8260 (0.7185-0.9149)  0.9721 (0.9324-0.9960) ~ 0.9437 (0.8753-0.9900)
GPFM 0.6300 (0.4923-0.7652)  0.9002 (0.8096-0.9682)  0.9844 (0.9514-1.0000)  0.9574 (0.9048-0.9918)
mSTAR 0.6633 (0.5283-0.7875)  0.9191 (0.8366-0.9796)  0.9790 (0.9409-0.9983)  0.9381 (0.8648-0.9863)
Virchow? 0.6012 (0.4506-0.7451)  0.9276 (0.8464-0.9866)  0.9895 (0.9682-1.0000)  0.9586 (0.8936-0.9951)
CONCHL1.5 0.5426 (0.4043-0.6799)  0.9106 (0.8321-0.9724)  0.9679 (0.8920-0.9995)  0.9253 (0.8431-0.9853)
Phikon 0.6441 (0.4951-0.7706)  0.8938 (0.8075-0.9613)  0.9786 (0.9432-0.9985)  0.9426 (0.8795-0.9873)
CTransPath 0.5701 (0.4361-0.7022)  0.8422 (0.7458-0.9236)  0.9541 (0.8828-0.9948)  0.9528 (0.8714-0.9951)
Phikon2 0.6279 (0.4945-0.7545)  0.9072 (0.8224-0.9724)  0.9671 (0.9182-0.9948)  0.9414 (0.8670-0.9882)

PLIP 0.5544 (0.4261-0.6787)
0.6818 (0.5472-0.7989)
0.5833 (0.4403-0.7316)
0.7362 (0.6196-0.8417)
0.7246 (0.5866-0.8500)
0.5226 (0.3959-0.6476)
0.5566 (0.4254-0.6850)

Prov-GigaPath
Virchow
H-Optimus-0
H-Optimus-1
MUSK
Hibou-L

0.7498 (0.6280-0.8583)
0.9163 (0.8257-0.9823)
0.8853 (0.7935-0.9569)
0.9263 (0.8375-0.9858)
0.9362 (0.8490-0.9930)
0.8231 (0.7171-0.9152)
0.8660 (0.7732-0.9399)

0.9394 (0.8396-0.9913)
0.9899 (0.9667-1.0000)
0.9822 (0.9394-1.0000)
0.9773 (0.9314-0.9992)
0.9892 (0.9706-1.0000)
0.9400 (0.8625-0.9885)
0.9083 (0.8189-0.9767)

0.9549 (0.8931-0.9929)
0.9652 (0.9190-0.9946)
0.9495 (0.8893-0.9885)
0.9780 (0.9295-1.0000)
0.9781 (0.9211-1.0000)
0.9178 (0.8364-0.9805)
0.9217 (0.8470-0.9761)
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Model

Internal (H2)

External (H9)

ResNet50
UNI

UNI2
CONCH
CHIEF
GPFM
mSTAR
Virchow?2
CONCHL1.5
Phikon
CTransPath
Phikon2
PLIP
Prov-GigaPath
Virchow
H-Optimus-0
H-Optimus-1
MUSK
Hibou-L

0.8880 (0.8670-0.9077)
0.9239 (0.9049-0.9411)
0.9313 (0.9148-0.9465)
0.8992 (0.8775-0.9196)
0.9144 (0.8949-0.9327)
0.9241 (0.9055-0.9410)
0.9225 (0.9017-0.9408)
0.9249 (0.9065-0.9414)
0.9182 (0.9006-0.9346)
0.9175 (0.8982-0.9356)
0.9132 (0.8939-0.9316)
0.9213 (0.9032-0.9383)
0.9092 (0.8881-0.9285)
0.9251 (0.9077-0.9416)
0.9173 (0.8990-0.9343)
0.9350 (0.9188-0.9500)
0.9380 (0.9232-0.9523)
0.9178 (0.8993-0.9351)
0.9088 (0.8881-0.9277)

0.7363 (0.7001-0.7706)
0.7996 (0.7592-0.8377)
0.8188 (0.7816-0.8554)
0.7622 (0.7292-0.7935)
0.7690 (0.7342-0.8022)
0.7958 (0.7469-0.8323)
0.7859 (0.7453-0.8340)
0.8202 (0.7850-0.8503)
0.7815 (0.7455-0.8164)
0.7945 (0.7532-0.8277)
0.7861 (0.7532-0.8171)
0.7960 (0.7594-0.8322)
0.7475 (0.7092-0.7786)
0.8134 (0.7817-0.8433)
0.7863 (0.7464-0.8281)
0.7996 (0.7563-0.8377)
0.7919 (0.7588-0.8315)
0.7203 (0.6763-0.7720)
0.7329 (0.6631-0.7885)

Model

Internal (H2)

External (H9)

ResNet50
UNI

UNI2
CONCH
CHIEF
GPFM
mSTAR
Virchow2
CONCHL1.5
Phikon
CTransPath
Phikon2
PLIP
Prov-GigaPath
Virchow
H-Optimus-0
H-Optimus-1
MUSK
Hibou-L

0.4102 (0.2721-0.5560)
0.7035 (0.5637-0.8317)
0.6865 (0.5372-0.8232)
0.6741 (0.5209-0.8107)
0.7082 (0.5751-0.8333)
0.6292 (0.4225-0.7969)
0.6885 (0.5410-0.8249)
0.7949 (0.6375-0.9077)
0.6795 (0.5420-0.8047)
0.6572 (0.4568-0.8069)
0.6381 (0.4829-0.7879)
0.6731 (0.5285-0.8060)
0.6397 (0.4982-0.7705)
0.6792 (0.5091-0.8185)
0.6125 (0.4388-0.8043)
0.6646 (0.5157-0.8011)
0.6565 (0.5068-0.7952)
0.5034 (0.3744-0.6316)
0.5502 (0.4112-0.6870)

0.4696 (0.3390-0.6026)
0.7191 (0.5766-0.8453)
0.6889 (0.5437-0.8275)
0.6884 (0.5491-0.8155)
0.6349 (0.4821-0.7769)
0.6804 (0.5390-0.8134)
0.7008 (0.5630-0.8259)
0.6748 (0.5287-0.8080)
0.6627 (0.5138-0.7982)
0.6561 (0.5108-0.7953)
0.6178 (0.4637-0.7656)
0.6651 (0.5142-0.8015)
0.6199 (0.4686-0.7633)
0.6703 (0.5191-0.8086)
0.6414 (0.4893-0.7820)
0.6557 (0.5154-0.7883)
0.6795 (0.5224-0.8206)
0.5795 (0.4287-0.7262)
0.5464 (0.3765-0.7189)

Table 6. Performance of the evaluated models on the molecular subtyping task in the breast cancer dataset. The mean AUC
and the 95% confidence interval are reported.

Table 7. Performance of the evaluated models on the tasks of TNM N staging (NO vs N+) of breast cancer. The mean AUC
and the 95% confidence interval are reported.
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Table 8. Performance of the evaluated models on the biomarker prediction tasks including ER, PR and HER?2 in the breast
cancer dataset. The mean AUC and the 95% confidence interval are reported.

Model

ER (H2)

PR (H2)

HER?2 (H2)

ResNet50
UNI

UNI2
CONCH
CHIEF
GPFM
mSTAR
Virchow2
CONCHL1.5
Phikon
CTransPath
Phikon2
PLIP
Prov-GigaPath
Virchow
H-Optimus-0
H-Optimus-1
MUSK
Hibou-L

0.8236 (0.7728-0.8697)
0.8952 (0.8571-0.9289)
0.9105 (0.8740-0.9426)
0.8850 (0.8432-0.9216)
0.8655 (0.8174-0.9089)
0.8944 (0.8533-0.9306)
0.8964 (0.8561-0.9318)
0.9041 (0.8660-0.9370)
0.8888 (0.8459-0.9256)
0.8928 (0.8527-0.9293)
0.8765 (0.8276-0.9174)
0.8883 (0.8479-0.9254)
0.8551 (0.8093-0.8960)
0.8901 (0.8500-0.9271)
0.8957 (0.8571-0.9304)
0.9140 (0.8788-0.9451)
0.9185 (0.8818-0.9501)
0.8854 (0.8451-0.9216)
0.8919 (0.8506-0.9286)

0.8619 (0.8095-0.9078)
0.8914 (0.8497-0.9288)
0.8732 (0.8248-0.9182)
0.8707 (0.8272-0.9096)
0.8808 (0.8375-0.9201)
0.8866 (0.8393-0.9265)
0.8847 (0.8378-0.9257)
0.8941 (0.8540-0.9307)
0.8843 (0.8450-0.9196)
0.8832 (0.8380-0.9233)
0.8806 (0.8311-0.9213)
0.8834 (0.8295-0.9248)
0.8887 (0.8483-0.9248)
0.8698 (0.8227-0.9125)
0.8784 (0.8313-0.9202)
0.8869 (0.8419-0.9259)
0.8855 (0.8421-0.9246)
0.8944 (0.8544-0.9293)
0.8759 (0.8272-0.9183)

0.7145 (0.6520-0.7732)
0.8176 (0.7563-0.8714)
0.8162 (0.7612-0.8675)
0.8041 (0.7453-0.8596)
0.8031 (0.7458-0.8554)
0.8358 (0.7826-0.8841)
0.8188 (0.7584-0.8716)
0.8264 (0.7712-0.8775)
0.7976 (0.7378-0.8542)
0.8141 (0.7552-0.8660)
0.8192 (0.7653-0.8678)
0.8278 (0.7679-0.8792)
0.7983 (0.7427-0.8491)
0.8284 (0.7572-0.8817)
0.8200 (0.7673-0.8681)
0.8454 (0.7870-0.8981)
0.8286 (0.7753-0.8789)
0.8013 (0.7409-0.8559)
0.7796 (0.7169-0.8378)

Table 9. Performance of the evaluated models on the tasks of biomark prediction tasks inlcuding AR and CKS, and the pTNM
staging task in the breast cancer dataset. The mean AUC and the 95% confidence interval are reported.

Model

AR (H2)

CKS5 (H2)

pTNM

ResNet50
UNI

UNI2
CONCH
CHIEF
GPFM
mSTAR
Virchow?2
CONCHL1.5
Phikon
CTransPath
Phikon2
PLIP
Prov-GigaPath
Virchow
H-Optimus-0
H-Optimus-1
MUSK
Hibou-L

0.7115 (0.6389-0.7812)
0.7292 (0.6549-0.7987)
0.7242 (0.6438-0.7982)
0.7345 (0.6501-0.8089)
0.7218 (0.6518-0.7892)
0.7447 (0.6764-0.8097)
0.7402 (0.6696-0.8077)
0.7292 (0.6526-0.7982)
0.7386 (0.6608-0.8100)
0.7147 (0.6412-0.7847)
0.7301 (0.6585-0.7978)
0.7209 (0.6312-0.7970)
0.7318 (0.6621-0.7975)
0.7228 (0.6492-0.7912)
0.6762 (0.5873-0.7676)
0.7238 (0.6438-0.7992)
0.7422 (0.6689-0.8101)
0.7388 (0.6672-0.8067)
0.7128 (0.6243-0.7901)

0.7618 (0.6479-0.8552)
0.8300 (0.7521-0.8986)
0.8481 (0.7718-0.9124)
0.8076 (0.7120-0.8888)
0.7865 (0.6968-0.8646)
0.8189 (0.7368-0.8915)
0.8322 (0.7526-0.9018)
0.8388 (0.7644-0.9034)
0.8062 (0.7238-0.8785)
0.8432 (0.7690-0.9069)
0.8023 (0.7168-0.8761)
0.8255 (0.7382-0.9006)
0.8035 (0.7208-0.8762)
0.8381 (0.7648-0.9024)
0.8450 (0.7724-0.9085)
0.8243 (0.7444-0.8942)
0.8376 (0.7612-0.9039)
0.8155 (0.7414-0.8812)
0.8128 (0.7325-0.8817)

0.5438 (0.4330-0.6525)
0.5743 (0.4631-0.6843)
0.5326 (0.4210-0.6467)
0.5560 (0.4489-0.6708)
0.5642 (0.4502-0.6787)
0.5876 (0.4790-0.6923)
0.5686 (0.4559-0.6818)
0.5652 (0.4518-0.6765)
0.6053 (0.4945-0.7185)
0.5890 (0.4820-0.6917)
0.6142 (0.5027-0.7206)
0.5923 (0.4828-0.7004)
0.6015 (0.4906-0.7098)
0.5732 (0.4510-0.6897)
0.5306 (0.4281-0.6407)
0.5456 (0.4293-0.6603)
0.5684 (0.4626-0.6763)
0.6026 (0.4946-0.7137)
0.5279 (0.4234-0.6372)
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Model 0S (H2) DFS (H2)
CHIEF 0.6796 (0.4861-0.8408)  0.6690 (0.4705-0.8495)
CONCH 0.6641 (0.4733-0.8307)  0.6352 (0.4617-0.7930)
CONCHI1.5 0.6762 (0.4743-0.8446)  0.6461 (0.4664-0.8076)
CTransPath 0.6809 (0.4828-0.8489)  0.6449 (0.4618-0.8133)

Prov-GigaPath
GPFM

0.6335 (0.4196-0.8281)
0.6523 (0.4532-0.8238)

0.6482 (0.4390-0.8417)
0.6475 (0.4318-0.8488)

H-Optimus-0  0.6410 (0.4008-0.8315)  0.6093 (0.4068-0.8060)
H-Optimus-1  0.6431 (0.4049-0.8232)  0.6347 (0.4227-0.8530)
Hibou-L 0.6397 (0.4356-0.8248)  0.5653 (0.3718-0.7422)
mSTAR 0.6505 (0.4395-0.8358)  0.6426 (0.4217-0.8512)
MUSK 0.6768 (0.4635-0.8592)  0.6145 (0.4281-0.7813)
Phikon 0.6794 (0.4700-0.8533)  0.6343 (0.4179-0.8510)
Phikon2 0.6548 (0.4526-0.8436)  0.6588 (0.4196-0.8671)
PLIP 0.6370 (0.4522-0.8029)  0.5534 (0.3531-0.7409)
ResNet50 0.6335 (0.4384-0.8048)  0.5782 (0.3812-0.7768)
UNI 0.6586 (0.4406-0.8387)  0.6491 (0.4257-0.8600)
UNI2 0.6676 (0.4432-0.8468)  0.6697 (0.4715-0.8504)
Virchow 0.6628 (0.4589-0.8282)  0.6502 (0.4462-0.8303)
Virchow2 0.6637 (0.4512-0.8644)  0.6404 (0.4453-0.8213)

Table 10. Performance of the evaluated models on the overall survival prediction and disease-free survival prediction tasks in
the breast cancer dataset. The mean C-Index and the 95% confidence interval are reported.

Table 11. Performance of the evaluated models on the gastric biopsy dataset (Biopsy-Cohort). The evaluted three tasks are:
detection of Intestinal Metaplasia, classification of Normal or Abnormal, and prediction of Autoimmune chronic gastritis with
Helicobacter pylori (ACGxHP). The mean AUC and the 95% confidence interval are reported.

Model Intestinal Metaplasia Normal/Abnormal ACGxHP

ResNet50 0.9354 (0.8899-0.9686) 0.8704 (0.8319-0.9052) 0.7888 (0.7005-0.8555)
UNI 0.9421 (0.8940-0.9713)  0.9187 (0.8820-0.9454)  0.8574 (0.7811-0.9124)
UNI2 0.9555 (0.9245-0.9775) 09118 (0.8763-0.9437)  0.8510 (0.7893-0.9047)
CONCH 0.9535 (0.9196-0.9755)  0.8987 (0.8576-0.9299) 0.8578 (0.7867-0.9163)
CHIEF 0.9364 (0.8817-0.9673)  0.9143 (0.8480-0.9449)  0.8385 (0.7809-0.8894)
GPFM 0.9311 (0.8470-0.9734)  0.9134 (0.8798-0.9414)  0.8645 (0.8036-0.9123)
mSTAR 0.9465 (0.8869-0.9736)  0.9226 (0.8897-0.9480)  0.8447 (0.7663-0.9065)
Virchow?2 0.9615 (0.9337-0.9792)  0.9232 (0.8908-0.9484)  0.8408 (0.7717-0.9015)
CONCHL1.5 0.9277 (0.8715-0.9678)  0.9045 (0.8700-0.9345) 0.8533 (0.7836-0.9111)
Phikon 0.9495 (0.9135-0.9733)  0.9161 (0.8848-0.9438)  0.8484 (0.7809-0.9033)
CTransPath 0.9422 (0.8909-0.9720)  0.9206 (0.8925-0.9450)  0.8278 (0.7620-0.8827)
Phikon2 0.9534 (0.9238-0.9761)  0.9126 (0.8834-0.9391)  0.8321 (0.7513-0.8950)
PLIP 0.9225 (0.8544-0.9629)  0.8773 (0.8364-0.9135)  0.8288 (0.7609-0.8870)
Prov-GigaPath  0.9515 (0.9220-0.9726) 0.9103 (0.8751-0.9402)  0.8522 (0.7823-0.9080)
Virchow 0.9554 (0.9208-0.9766) 0.9012 (0.8628-0.9337)  0.8400 (0.7498-0.9037)
H-Optimus-0  0.9582 (0.9252-0.9771)  0.9254 (0.8956-0.9508)  0.8505 (0.7569-0.9068)
H-Optimus-1 0.9631 (0.9426-0.9780)  0.9319 (0.9017-0.9559) 0.8392 (0.7607-0.9046)
MUSK 0.9322 (0.8896-0.9630)  0.8991 (0.8685-0.9264) 0.8551 (0.7914-0.9094)
Hibou-L 0.9569 (0.9216-0.9758)  0.9006 (0.8668-0.9306)  0.8095 (0.7116-0.8802)
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Table 12. Performance of the evaluated models on the gastric biopsy dataset (Biopsy-Cohort). The evaluted three tasks are
detection of Helicobacter pylori-associated chronic gastritis (HPACG), classification of gastric polyps, and classification of
gastric ulcers. The mean AUC and the 95% confidence interval are reported.

Model HPACG Polyp Ulcer

ResNet50 0.9081 (0.8398-0.9562) 0.8136 (0.7057-0.9053)  0.7401 (0.6192-0.8388)
UNI 0.9538 (0.9077-0.9810)  0.9457 (0.8785-0.9860) 0.8366 (0.7336-0.9241)
UNI2 0.9520 (0.9010-0.9802) 0.9444 (0.8877-0.9824) 0.8433 (0.7352-0.9285)
CONCH 0.9591 (0.9306-0.9790)  0.8990 (0.8003-0.9637) 0.8372 (0.7341-0.9248)
CHIEF 0.9413 (0.9034-0.9708)  0.9242 (0.8619-0.9713) 0.8133 (0.6297-0.9113)
GPFM 0.9440 (0.9003-0.9745)  0.9254 (0.8428-0.9800)  0.8590 (0.7633-0.9348)
mSTAR 0.9518 (0.9085-0.9786)  0.9472 (0.8880-0.9858) 0.8524 (0.7590-0.9313)
Virchow?2 0.9647 (0.9408-0.9814)  0.9203 (0.8325-0.9802) 0.8502 (0.7564-0.9249)
CONCHL1.5 0.9644 (0.9420-0.9813)  0.8782 (0.7695-0.9610)  0.8664 (0.7793-0.9330)
Phikon 0.9304 (0.8546-0.9746) 0.9071 (0.8082-0.9759) 0.8101 (0.6839-0.9141)
CTransPath 0.9403 (0.8973-0.9730)  0.9085 (0.8160-0.9757)  0.8187 (0.7161-0.9054)
Phikon2 0.9455 (0.9033-0.9748)  0.9170 (0.8424-0.9702)  0.8048 (0.6562-0.9131)
PLIP 0.9297 (0.8825-0.9647)  0.8583 (0.7563-0.9365) 0.7738 (0.6604-0.8724)
Prov-GigaPath  0.9559 (0.9078-0.9814) 0.9224 (0.8404-0.9772)  0.7991 (0.6434-0.9056)
Virchow 0.9466 (0.9020-0.9756)  0.9304 (0.8540-0.9804) 0.8255 (0.7050-0.9210)
H-Optimus-0  0.9676 (0.9394-0.9841) 0.9634 (0.9174-0.9907)  0.8444 (0.7252-0.9291)
H-Optimus-1 0.9601 (0.9138-0.9864)  0.9746 (0.9478-0.9930) 0.8478 (0.7280-0.9287)
MUSK 0.9428 (0.9115-0.9697)  0.8618 (0.7555-0.9460)  0.7790 (0.6372-0.8884)
Hibou-L 0.9006 (0.8220-0.9609) 0.9316 (0.8737-0.9728)  0.8070 (0.6892-0.9036)

Model Internal (H1) External (H3) External (H4)

ResNet50 0.6693 (0.4992-0.8235) 0.7336 (0.6193-0.8283) 0.7217 (0.5854-0.8292)
UNI 0.8502 (0.7371-0.9405) 0.8268 (0.7559-0.8897) 0.8451 (0.7827-0.8986)
UNI2 0.8834 (0.7894-0.9543) 0.8200 (0.7468-0.8834)  0.8232 (0.7490-0.8866)
CONCH 0.8377 (0.7312-0.9283)  0.8438 (0.7809-0.9009)  0.8626 (0.8053-0.9130)
CHIEF 0.7878 (0.6579-0.9007)  0.8479 (0.7790-0.9037) 0.8218 (0.7549-0.8819)
GPFM 0.8492 (0.7413-0.9397)  0.8170 (0.7496-0.8797)  0.8345 (0.7756-0.8867)
mSTAR 0.8562 (0.7538-0.9412) 0.8311 (0.7619-0.8914)  0.8453 (0.7855-0.8974)
Virchow?2 0.8616 (0.7589-0.9429) 0.8330 (0.7684-0.8926) 0.8364 (0.7676-0.8996)
CONCHI1.5 0.8534 (0.7333-0.9471)  0.8447 (0.7785-0.9024)  0.8542 (0.7938-0.9062)
Phikon 0.8165 (0.6850-0.9254) 0.8214 (0.7534-0.8836)  0.8223 (0.7602-0.8771)
CTransPath 0.8035 (0.6799-0.9075) 0.8481 (0.7767-0.9053) 0.8110 (0.7378-0.8754)
Phikon2 0.8422 (0.7274-0.9355)  0.8312 (0.7659-0.8902)  0.8275 (0.7628-0.8847)
PLIP 0.7871 (0.6367-0.9106)  0.8545 (0.7988-0.9037)  0.8549 (0.7995-0.9040)
Prov-GigaPath  0.8494 (0.7292-0.9444) 0.8214 (0.7496-0.8914)  0.8400 (0.7775-0.8952)
Virchow 0.8678 (0.7686-0.9486)  0.8285 (0.7593-0.8926)  0.8380 (0.7759-0.8939)
H-Optimus-0 0.8607 (0.7500-0.9448) 0.8260 (0.7629-0.8868)  0.8389 (0.7759-0.8944)
H-Optimus-1 0.8617 (0.7550-0.9453) 0.8416 (0.7781-0.8966)  0.8594 (0.7984-0.9116)
MUSK 0.8115 (0.6863-0.9183) 0.8707 (0.8174-0.9189) 0.8310 (0.7689-0.8860)
Hibou-L 0.8333 (0.6937-0.9367) 0.8312 (0.7549-0.8963)  0.8483 (0.7914-0.9000)

Table 13. Performance of the evaluated models on the gastric grade Assesment task. One internal dataset (H1) and two
external datasets (H3 and H4) are used for evaluation. The mean AUC and the 95% confidence interval are reported.
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Table 14. Performance of the evaluated models on the gastric Lauren subtyping. One internal dataset (H1) and two external
datasets (H3 and H4) are used for evaluation. The mean AUC and the 95% confidence interval are reported.

Model

Internal (H1)

External (H3)

External (H4)

ResNet50
UNI

UNI2
CONCH
CHIEF
GPFM
mSTAR
Virchow?2
CONCHL1.5
Phikon
CTransPath
Phikon2
PLIP
Prov-GigaPath
Virchow
H-Optimus-0
H-Optimus-1
MUSK
Hibou-L

0.5692 (0.4582-0.6698)
0.7902 (0.7037-0.8737)
0.7839 (0.6976-0.8657)
0.8016 (0.7184-0.8784)
0.7775 (0.6925-0.8571)
0.7783 (0.6914-0.8610)
0.7785 (0.6936-0.8588)
0.8064 (0.7220-0.8835)
0.8161 (0.7356-0.8881)
0.7949 (0.7077-0.8756)
0.7655 (0.6783-0.8499)
0.7860 (0.6994-0.8683)
0.7413 (0.6514-0.8237)
0.7785 (0.6955-0.8574)
0.7687 (0.6796-0.8529)
0.7699 (0.6802-0.8558)
0.7579 (0.6611-0.8481)
0.7740 (0.6881-0.8525)
0.7606 (0.6587-0.8471)

0.5947 (0.5159-0.6713)
0.7843 (0.7041-0.8637)
0.7897 (0.7315-0.8517)
0.7990 (0.7341-0.8605)
0.7924 (0.7297-0.8511)
0.7705 (0.7056-0.8481)
0.7945 (0.7235-0.8637)
0.8128 (0.7538-0.8717)
0.8067 (0.7455-0.8654)
0.7861 (0.7266-0.8430)
0.7908 (0.7315-0.8488)
0.7952 (0.7332-0.8554)
0.7470 (0.6800-0.8112)
0.7888 (0.7203-0.8601)
0.8102 (0.7434-0.8793)
0.8034 (0.7385-0.8654)
0.7970 (0.7203-0.8646)
0.7846 (0.7275-0.8380)
0.7784 (0.7074-0.8469)

0.5582 (0.5075-0.6089)
0.7759 (0.7096-0.8332)
0.7780 (0.7205-0.8252)
0.7937 (0.7497-0.8360)
0.7911 (0.7453-0.8357)
0.7842 (0.7394-0.8283)
0.7698 (0.6986-0.8340)
0.7828 (0.7363-0.8253)
0.7808 (0.7393-0.8211)
0.7764 (0.7154-0.8260)
0.7925 (0.7485-0.8335)
0.7893 (0.7413-0.8347)
0.7371 (0.6962-0.7778)
0.7913 (0.7253-0.8357)
0.7635 (0.7167-0.8087)
0.7599 (0.7119-0.8058)
0.7569 (0.7045-0.8041)
0.7809 (0.7401-0.8214)
0.7688 (0.7175-0.8149)

Table 15. Performance of the evaluated models on the gastric pathological subtyping task. One internal dataset (H1) and two

external datasets (H3 and H4) are used for evaluation. The mean AUC and the 95% confidence interval are reported.

Model

Internal (H1)

External (H3)

External (H4)

ResNet50
UNI

UNI2
CONCH
CHIEF
GPFM
mSTAR
Virchow?2
CONCHL1.5
Phikon
CTransPath
Phikon2
PLIP
Prov-GigaPath
Virchow
H-Optimus-0
H-Optimus-1
MUSK
Hibou-L

0.6028 (0.5014-0.7084)
0.8079 (0.6975-0.8939)
0.7928 (0.7000-0.8770)
0.8023 (0.7120-0.8823)
0.7426 (0.6348-0.8375)
0.7908 (0.6904-0.8777)
0.8057 (0.6913-0.8972)
0.8159 (0.7290-0.8943)
0.8016 (0.7179-0.8775)
0.7538 (0.6563-0.8441)
0.7328 (0.6386-0.8238)
0.7912 (0.6823-0.8802)
0.6825 (0.5859-0.7794)
0.7663 (0.6551-0.8567)
0.7933 (0.7023-0.8789)
0.8077 (0.7188-0.8885)
0.8070 (0.7042-0.8925)
0.7539 (0.6685-0.8349)
0.6830 (0.5897-0.7776)

0.5312 (0.4525-0.6028)
0.6350 (0.5569-0.7168)
0.6808 (0.5956-0.7640)
0.6225 (0.5476-0.7384)
0.5879 (0.5011-0.6706)
0.6855 (0.5964-0.7704)
0.6277 (0.5501-0.7108)
0.6813 (0.5946-0.7719)
0.7367 (0.6520-0.8228)
0.6558 (0.5774-0.7359)
0.5752 (0.5004-0.6507)
0.6337 (0.5551-0.7170)
0.5706 (0.4985-0.6492)
0.6309 (0.5467-0.7185)
0.6377 (0.5425-0.7786)
0.7441 (0.6629-0.8207)
0.7087 (0.5870-0.8172)
0.6071 (0.5317-0.6866)
0.5735 (0.4807-0.6977)

0.5061 (0.4568-0.5533)
0.6531 (0.5784-0.7314)
0.6691 (0.5887-0.7452)
0.6250 (0.5627-0.7762)
0.5543 (0.4933-0.6197)
0.6840 (0.5922-0.7759)
0.6438 (0.5802-0.7139)
0.6704 (0.5953-0.7558)
0.7266 (0.6455-0.8271)
0.6247 (0.5560-0.7082)
0.5694 (0.5037-0.6332)
0.6153 (0.5473-0.6805)
0.5700 (0.5043-0.6485)
0.6564 (0.5952-0.7321)
0.6283 (0.5418-0.8034)
0.6914 (0.6092-0.7707)
0.6538 (0.5585-0.7805)
0.6006 (0.5424-0.6673)
0.5064 (0.4704-0.5457)
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Table 16. Performance of the evaluated models on the gastric Perineural Invasion task. One internal dataset (H1) and two

external datasets (H3 and H4) are used for evaluation. The mean AUC and the 95% confidence interval are reported.

Model

Internal (H1)

External (H3)

External (H4)

ResNet50
UNI

UNI2
CONCH
CHIEF
GPFM
mSTAR
Virchow2
CONCHL1.5
Phikon
CTransPath
Phikon2
PLIP
Prov-GigaPath
Virchow
H-Optimus-0
H-Optimus-1
MUSK
Hibou-L

0.8385 (0.7293-0.9320)
0.9269 (0.8467-0.9863)
0.9191 (0.8372-0.9800)
0.9303 (0.8482-0.9886)
0.9118 (0.8310-0.9733)
0.9284 (0.8519-0.9825)
0.9282 (0.8487-0.9876)
0.9345 (0.8657-0.9844)
0.9009 (0.8087-0.9725)
0.9181 (0.8330-0.9808)
0.9138 (0.8370-0.9732)
0.9250 (0.8495-0.9802)
0.9404 (0.8713-0.9884)
0.9121 (0.8290-0.9756)
0.9171 (0.8333-0.9772)
0.9232 (0.8440-0.9817)
0.9226 (0.8433-0.9803)
0.9252 (0.8479-0.9830)
0.9237 (0.8473-0.9808)

0.7781 (0.7003-0.8477)
0.8457 (0.7863-0.8974)
0.8461 (0.7853-0.8993)
0.8457 (0.7870-0.8974)
0.8382 (0.7676-0.8975)
0.8493 (0.7921-0.9007)
0.8456 (0.7885-0.8972)
0.8455 (0.7844-0.8992)
0.8005 (0.7213-0.8679)
0.8482 (0.7901-0.9007)
0.8401 (0.7694-0.8974)
0.8409 (0.7814-0.8950)
0.8425 (0.7799-0.8981)
0.8341 (0.7703-0.8893)
0.8397 (0.7772-0.8937)
0.8517 (0.7944-0.9026)
0.8351 (0.7698-0.8906)
0.8421 (0.7733-0.9005)
0.8294 (0.7485-0.8907)

0.6937 (0.6315-0.7519)
0.7559 (0.6974-0.8098)
0.7586 (0.7012-0.8136)
0.7588 (0.7036-0.8109)
0.7463 (0.6837-0.8035)
0.7632 (0.7070-0.8143)
0.7523 (0.6961-0.8059)
0.7656 (0.6998-0.8216)
0.7441 (0.6858-0.7999)
0.7465 (0.6900-0.8012)
0.7490 (0.6900-0.8023)
0.7494 (0.6928-0.8032)
0.7234 (0.6629-0.7795)
0.7458 (0.6860-0.8016)
0.7540 (0.6969-0.8076)
0.7541 (0.6990-0.8058)
0.7553 (0.7022-0.8061)
0.7297 (0.6728-0.7852)
0.7307 (0.6708-0.7874)

Table 17. Performance of the evaluated models on the gastric Vascular Invasion task. One internal dataset (H1) and two

external datasets (H3 and H4) are used for evaluation. The mean AUC and the 95% confidence interval are reported.

Model

Internal (H1)

External (H3)

External (H4)

ResNet50
UNI

UNI2
CONCH
CHIEF
GPFM
mSTAR
Virchow?2
CONCHL1.5
Phikon
CTransPath
Phikon2
PLIP
Prov-GigaPath
Virchow
H-Optimus-0
H-Optimus-1
MUSK
Hibou-L

0.7549 (0.6353-0.8619)
0.7475 (0.6287-0.8578)
0.7817 (0.6701-0.8825)
0.7680 (0.6551-0.8705)
0.7663 (0.6528-0.8703)
0.7715 (0.6492-0.8786)
0.7642 (0.6468-0.8697)
0.7677 (0.6456-0.8756)
0.7321 (0.5901-0.8538)
0.7730 (0.6577-0.8764)
0.7633 (0.6476-0.8693)
0.7782 (0.6545-0.8858)
0.7706 (0.6592-0.8744)
0.7759 (0.6630-0.8770)
0.8019 (0.6956-0.8964)
0.7581 (0.6272-0.8684)
0.7637 (0.6435-0.8717)
0.7655 (0.6519-0.8726)
0.7332 (0.5957-0.8517)

0.6593 (0.5826-0.7337)
0.7099 (0.6299-0.7833)
0.7044 (0.6199-0.7831)
0.7085 (0.6254-0.7845)
0.7182 (0.6443-0.7883)
0.7345 (0.6596-0.8035)
0.7226 (0.6435-0.7959)
0.7345 (0.6559-0.8061)
0.6922 (0.6057-0.7752)
0.7256 (0.6517-0.7968)
0.7367 (0.6649-0.8030)
0.7479 (0.6774-0.8121)
0.6861 (0.6100-0.7584)
0.7193 (0.6409-0.7949)
0.7140 (0.6354-0.7883)
0.7307 (0.6556-0.8010)
0.7182 (0.6355-0.7934)
0.7188 (0.6449-0.7885)
0.7279 (0.6540-0.7968)

0.6693 (0.5930-0.7353)
0.6879 (0.6124-0.7495)
0.6966 (0.6282-0.7569)
0.7142 (0.6487-0.7764)
0.7065 (0.6472-0.7633)
0.7120 (0.6499-0.7701)
0.6952 (0.6330-0.7561)
0.7221 (0.6607-0.7795)
0.6953 (0.6292-0.7586)
0.7011 (0.6328-0.7634)
0.7126 (0.6552-0.7687)
0.7205 (0.6605-0.7780)
0.6502 (0.5848-0.7132)
0.6857 (0.6222-0.7476)
0.6899 (0.6242-0.7556)
0.7045 (0.6426-0.7666)
0.7115 (0.6497-0.7716)
0.6906 (0.6307-0.7478)
0.6991 (0.6361-0.7587)
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Table 18. Performance of the evaluated models on the gastric biomarker detection task based on the Gastric-Cohort from

center H1. The mean AUC and the 95% confidence interval are reported.

Model

S-100

HER-2

ResNet50
UNI

UNI2
CONCH
CHIEF
GPFM
mSTAR
Virchow?2
CONCHL1.5
Phikon
CTransPath
Phikon2
PLIP
Prov-GigaPath
Virchow
H-Optimus-0
H-Optimus-1
MUSK
Hibou-L

0.7483 (0.6007-0.8776)
0.8254 (0.6687-0.9433)
0.8347 (0.6177-0.9618)
0.8477 (0.7216-0.9449)
0.7976 (0.6375-0.9231)
0.8135 (0.6667-0.9347)
0.8335 (0.6988-0.9422)
0.8502 (0.7096-0.9568)
0.7542 (0.5798-0.8987)
0.8219 (0.6687-0.9400)
0.8181 (0.6728-0.9333)
0.7548 (0.5979-0.8918)
0.8046 (0.6634-0.9197)
0.8261 (0.6605-0.9404)
0.8374 (0.6745-0.9487)
0.8095 (0.6485-0.9374)
0.7812 (0.6121-0.9194)
0.8096 (0.6643-0.9305)
0.8172 (0.6745-0.9356)

0.4919 (0.3634-0.6189)
0.5727 (0.4242-0.7178)
0.5607 (0.4309-0.6869)
0.5317 (0.3975-0.6660)
0.5357 (0.4105-0.6574)
0.5945 (0.4617-0.7213)
0.5625 (0.3878-0.7089)
0.5447 (0.4212-0.6663)
0.6179 (0.5011-0.7342)
0.5899 (0.4587-0.7151)
0.5205 (0.3963-0.6440)
0.5590 (0.4262-0.6803)
0.5362 (0.4018-0.6657)
0.5929 (0.4683-0.7116)
0.5429 (0.4190-0.6659)
0.5142 (0.3824-0.6458)
0.5153 (0.3844-0.6425)
0.5291 (0.4102-0.6493)
0.5671 (0.4440-0.6871)

Table 19. Performance of the evaluated models on the gastric TNM-N task. One internal dataset (H1) and two external

datasets (H3 and H4) are used for evaluation. The mean AUC and the 95% confidence interval are reported.

Model

Internal (H1)

External (H3)

External (H4)

ResNet50
UNI

UNI2
CONCH
CHIEF
GPFM
mSTAR
Virchow?2
CONCHL1.5
Phikon
CTransPath
Phikon2
PLIP
Prov-GigaPath
Virchow
H-Optimus-0
H-Optimus-1
MUSK
Hibou-L

0.7481 (0.6312-0.8510)
0.7820 (0.6485-0.8887)
0.7908 (0.6786-0.8870)
0.7831 (0.6701-0.8831)
0.7940 (0.6879-0.8856)
0.7848 (0.6637-0.8819)
0.7916 (0.6726-0.8894)
0.7899 (0.6794-0.8846)
0.7458 (0.6223-0.8540)
0.7700 (0.6419-0.8788)
0.7995 (0.6966-0.8894)
0.7805 (0.6604-0.8810)
0.7772 (0.6673-0.8782)
0.7652 (0.6454-0.8670)
0.7768 (0.6543-0.8781)
0.8095 (0.7029-0.8986)
0.7917 (0.6758-0.8888)
0.7703 (0.6567-0.8718)
0.7643 (0.6468-0.8659)

0.6572 (0.5784-0.7336)
0.7383 (0.6656-0.8080)
0.7665 (0.6964-0.8322)
0.7529 (0.6809-0.8198)
0.7503 (0.6790-0.8177)
0.7476 (0.6726-0.8157)
0.7428 (0.6696-0.8122)
0.7508 (0.6813-0.8183)
0.7411 (0.6670-0.8115)
0.7608 (0.6899-0.8278)
0.7552 (0.6857-0.8201)
0.7570 (0.6890-0.8204)
0.6879 (0.6125-0.7602)
0.7523 (0.6801-0.8198)
0.7327 (0.6584-0.8046)
0.7524 (0.6819-0.8192)
0.7452 (0.6711-0.8139)
0.7473 (0.6778-0.8130)
0.7371 (0.6655-0.8046)

0.6337 (0.5706-0.6963)
0.6927 (0.6318-0.7515)
0.6899 (0.6096-0.7579)
0.6887 (0.6291-0.7477)
0.6881 (0.6292-0.7455)
0.6955 (0.6197-0.7560)
0.6957 (0.6368-0.7526)
0.6934 (0.6341-0.7521)
0.6906 (0.6265-0.7523)
0.7003 (0.6371-0.7592)
0.6993 (0.6415-0.7554)
0.7059 (0.6462-0.7633)
0.6675 (0.6069-0.7263)
0.6919 (0.6292-0.7500)
0.6705 (0.6072-0.7324)
0.6938 (0.6339-0.7512)
0.6993 (0.6356-0.7586)
0.6914 (0.6328-0.7487)
0.6894 (0.6298-0.7480)
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Table 20. Performance of the evaluated models on the gastric TNM-T task. One internal dataset (H1) and two external
datasets (H3 and H4) are used for evaluation. The mean AUC and the 95% confidence interval are reported.

Model

Internal (H1)

External (H3)

External (H4)

ResNet50
UNI

UNI2
CONCH
CHIEF
GPFM
mSTAR
Virchow2
CONCHL1.5
Phikon
CTransPath
Phikon2
PLIP
Prov-GigaPath
Virchow
H-Optimus-0
H-Optimus-1
MUSK
Hibou-L

0.7183 (0.6298-0.7955)
0.7831 (0.7104-0.8504)
0.8062 (0.7331-0.8724)
0.8176 (0.7510-0.8779)
0.7631 (0.6866-0.8390)
0.7894 (0.7197-0.8558)
0.7843 (0.7121-0.8520)
0.8226 (0.7587-0.8797)
0.8184 (0.7504-0.8810)
0.7815 (0.7013-0.8545)
0.7730 (0.6979-0.8441)
0.7754 (0.6989-0.8487)
0.8007 (0.7397-0.8576)
0.7913 (0.7177-0.8603)
0.7660 (0.6875-0.8410)
0.8066 (0.7358-0.8720)
0.8141 (0.7438-0.8819)
0.8179 (0.7608-0.8720)
0.7845 (0.6905-0.8689)

0.6401 (0.5823-0.6963)
0.6763 (0.6353-0.7177)
0.6369 (0.6066-0.6687)
0.6741 (0.6363-0.7131)
0.6333 (0.5997-0.6679)
0.6572 (0.6199-0.6963)
0.6713 (0.6324-0.7169)
0.7122 (0.6731-0.7504)
0.6610 (0.6248-0.6994)
0.6619 (0.6172-0.7118)
0.6450 (0.6066-0.6943)
0.6446 (0.6066-0.6827)
0.6976 (0.6534-0.7408)
0.6710 (0.6266-0.7242)
0.6324 (0.5956-0.6759)
0.6719 (0.6310-0.7107)
0.6996 (0.6571-0.7482)
0.6995 (0.6590-0.7402)
0.6502 (0.6029-0.7064)

0.6708 (0.6258-0.7158)
0.7429 (0.7064-0.7801)
0.7371 (0.6986-0.7764)
0.7513 (0.7158-0.7862)
0.6944 (0.6551-0.7316)
0.7351 (0.6968-0.7718)
0.7412 (0.7036-0.7789)
0.7566 (0.7184-0.7931)
0.7504 (0.7122-0.7872)
0.7208 (0.6782-0.7611)
0.6983 (0.6614-0.7418)
0.7445 (0.7085-0.7801)
0.7075 (0.6670-0.7471)
0.7442 (0.7072-0.7807)
0.7287 (0.6886-0.7665)
0.7559 (0.7179-0.7931)
0.7546 (0.7162-0.7914)
0.7203 (0.6840-0.7554)
0.7383 (0.6947-0.7781)

Table 21. Performance of the evaluated models on the gastric overall survival (OS) and disease free survival (DFS) tasks. The
5-fold cross-validation is performed. The mean C-Index and the 95% confidence interval are reported.

Model

0S (H3)

DFS (H3)

CHIEF
CONCH
CONCHL1.5
CTransPath
Prov-GigaPath
GPFM
H-Optimus-0
H-Optimus-1
Hibou-L
mSTAR
MUSK
Phikon
Phikon2
PLIP
ResNet50
UNI

UNI2
Virchow
Virchow2

0.6343 (0.5183-0.7338)
0.6481 (0.5468-0.7403)
0.6636 (0.5630-0.7570)
0.6372 (0.5327-0.7357)
0.6400 (0.5176-0.7494)
0.6403 (0.5213-0.7447)
0.6518 (0.5222-0.7578)
0.6596 (0.5407-0.7636)
0.6429 (0.4994-0.7562)
0.6452 (0.5184-0.7523)
0.6529 (0.5479-0.7601)
0.6397 (0.5237-0.7425)
0.6414 (0.5296-0.7401)
0.6308 (0.5158-0.7320)
0.6357 (0.5363-0.7277)
0.6450 (0.5150-0.7525)
0.6488 (0.5400-0.7504)
0.6417 (0.5138-0.7501)
0.6640 (0.5482-0.7676)

0.7164 (0.5248-0.8343)
0.7202 (0.5377-0.8315)
0.7329 (0.5594-0.8374)
0.7171 (0.5344-0.8377)
0.7272 (0.5266-0.8387)
0.7180 (0.4973-0.8432)
0.7216 (0.5108-0.8431)
0.7299 (0.5397-0.8419)
0.7273 (0.5473-0.8453)
0.7212 (0.5211-0.8357)
0.7122 (0.5327-0.8297)
0.7174 (0.5194-0.8318)
0.7183 (0.4870-0.8452)
0.7018 (0.5263-0.8198)
0.7149 (0.5435-0.8270)
0.7219 (0.5301-0.8350)
0.7323 (0.5414-0.8448)
0.7034 (0.5198-0.8229)
0.7229 (0.5230-0.8412)
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Model IDH Mutation Pathological Subtype WHO Grading

ResNet50 0.8308 (0.7553-0.8966)  0.8587 (0.8056-0.9081) 0.7689 (0.7006-0.8360)
UNI 0.8905 (0.8169-0.9501)  0.9067 (0.8411-0.9542)  0.8535 (0.7936-0.9066)
UNI2 0.8869 (0.8194-0.9446)  0.9469 (0.9086-0.9746) 0.8724 (0.8203-0.9195)
CONCH 0.8673 (0.7958-0.9282)  0.8943 (0.8424-0.9400) 0.8271 (0.7756-0.8766)
CHIEF 0.8265 (0.7420-0.9038)  0.8600 (0.7804-0.9155) 0.8193 (0.7645-0.8725)
GPFM 0.8886 (0.8183-0.9462)  0.9255 (0.8720-0.9667) 0.8422 (0.7821-0.8954)
mSTAR 0.8848 (0.8118-0.9452) 0.9125 (0.8511-0.9569) 0.8561 (0.8031-0.9047)
Virchow?2 0.8684 (0.7973-0.9290)  0.9224 (0.8619-0.9678) 0.8474 (0.7946-0.8986)
CONCHI1.5 0.8629 (0.7880-0.9251)  0.9097 (0.8647-0.9477) 0.8292 (0.7754-0.8812)
Phikon 0.8797 (0.8133-0.9369) 0.9110 (0.8574-0.9539) 0.8208 (0.7561-0.8810)
CTransPath 0.8583 (0.7852-0.9260)  0.8498 (0.7899-0.9066)  0.8066 (0.7494-0.8618)
Phikon2 0.8743 (0.8020-0.9354)  0.9223 (0.8626-0.9624) 0.8410 (0.7738-0.8974)
PLIP 0.8340 (0.7618-0.8996)  0.8675 (0.8096-0.9160) 0.7602 (0.6986-0.8203)
Prov-GigaPath  0.8940 (0.8264-0.9496) 0.9344 (0.8893-0.9666)  0.8495 (0.7921-0.9026)
Virchow 0.8404 (0.7212-0.9238)  0.9006 (0.8394-0.9521)  0.8226 (0.7569-0.8846)
H-Optimus-0  0.9013 (0.8389-0.9533)  0.9205 (0.8700-0.9609)  0.8571 (0.7979-0.9094)
H-Optimus-1 0.8915 (0.8213-0.9484)  0.9400 (0.8948-0.9730) 0.8670 (0.8113-0.9169)
MUSK 0.8804 (0.8179-0.9337)  0.8640 (0.8005-0.9239)  0.8064 (0.7468-0.8642)
Hibou-L 0.8579 (0.7784-0.9224)  0.9053 (0.8490-0.9518) 0.8329 (0.7730-0.8895)

Table 22. Performance of the evaluated models on the glioma IDH mutation, pathological subtype classification and WHO
grading tasks on the Glioma-Cohort from center H1. The mean AUC and the 95% confidence interval are reported.

Table 23. Performance of the evaluated models on the classification of lymph node staging (NO vs N+), tumor invasion depth
(T1+T2 vs T3+T4, and T1 vs T2 vs T3 vs T4) tasks on the colorectal cancer dataset. The mean AUC and the 95% confidence
interval are reported.

Model N staging (HS8) T staging (4 class, H8) T staging (2 class, H8)
ResNet50 0.8553 (0.7826-0.9166)  0.7797 (0.6815-0.8637)  0.8556 (0.7330-0.9519)
UNI 0.8961 (0.8310-0.9500) 0.8455 (0.7650-0.9091)  0.9052 (0.8028-0.9798)
UNI2 0.8818 (0.8145-0.9391)  0.8633 (0.7913-0.9215)  0.9062 (0.8026-0.9832)
CONCH 0.8832 (0.8113-0.9420) 0.8466 (0.7575-0.9155) 0.8868 (0.7624-0.9751)
CHIEF 0.9006 (0.8386-0.9511)  0.8481 (0.7729-0.9113)  0.8681 (0.7453-0.9621)
GPFM 0.8901 (0.8260-0.9448) 0.8542 (0.7786-0.9189) 0.9152 (0.8247-0.9789)
mSTAR 0.8970 (0.8342-0.9497) 0.8561 (0.7897-0.9155)  0.9084 (0.8080-0.9801)
Virchow?2 0.8978 (0.8362-0.9494) 0.8783 (0.8115-0.9319) 0.9160 (0.8271-0.9838)
CONCHL1.5 0.8868 (0.8211-0.9422) 0.8576 (0.7856-0.9187)  0.8956 (0.7939-0.9766)
Phikon 0.8834 (0.8190-0.9390)  0.8528 (0.7767-0.9129)  0.9067 (0.8046-0.9782)
CTransPath 0.9126 (0.8566-0.9586) 0.8072 (0.6977-0.8932)  0.8531 (0.7064-0.9626)
Phikon2 0.8848 (0.8196-0.9403)  0.8450 (0.7666-0.9118)  0.8909 (0.7789-0.9752)
PLIP 0.8929 (0.8311-0.9448)  0.8881 (0.8154-0.9440) 0.8828 (0.7437-0.9817)
Prov-GigaPath  0.8990 (0.8356-0.9515) 0.8644 (0.7952-0.9230)  0.8895 (0.7615-0.9790)
Virchow 0.8794 (0.8036-0.9375)  0.8615 (0.7937-0.9207)  0.9049 (0.8038-0.9789)
H-Optimus-0  0.8930 (0.8286-0.9463)  0.8725 (0.7972-0.9306)  0.9063 (0.7983-0.9846)
H-Optimus-1 0.8927 (0.8293-0.9466) 0.8864 (0.8295-0.9358)  0.9291 (0.8360-0.9918)
MUSK 0.9047 (0.8450-0.9544) 0.8511 (0.7728-0.9150)  0.8487 (0.6983-0.9642)
Hibou-L 0.8748 (0.7900-0.9363)  0.8403 (0.7523-0.9105) 0.8704 (0.7227-0.9717)
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Table 24. Performance of the evaluated models on the classification of TNM staging task and consensus molecular subtyping
task in the colorectal cancer. The mean AUC and the 95% confidence interval are reported.

Model

TNM Staging

Consensus Molecular Subtyping

ResNet50
UNI

UNI2
CONCH
CHIEF
GPFM
mSTAR
Virchow2
CONCHL1.5
Phikon
CTransPath
Phikon2
PLIP
Prov-GigaPath
Virchow
H-Optimus-0
H-Optimus-1
MUSK
Hibou-L

0.8724 (0.8207-0.9181)
0.9076 (0.8641-0.9441)
0.9050 (0.8625-0.9413)
0.9096 (0.8633-0.9491)
0.9197 (0.8828-0.9519)
0.9272 (0.8894-0.9587)
0.9095 (0.8682-0.9448)
0.9138 (0.8750-0.9478)
0.9244 (0.8865-0.9558)
0.9072 (0.8639-0.9438)
0.9155 (0.8777-0.9486)
0.9265 (0.8898-0.9573)
0.9096 (0.8689-0.9457)
0.9174 (0.8771-0.9509)
0.9090 (0.8665-0.9475)
0.9097 (0.8687-0.9460)
0.9120 (0.8692-0.9471)
0.9201 (0.8777-0.9541)
0.8906 (0.8365-0.9344)

0.5919 (0.5120-0.6726)
0.7567 (0.6788-0.8307)
0.7735 (0.7004-0.8419)
0.7344 (0.6607-0.8042)
0.7559 (0.6627-0.8300)
0.7565 (0.6847-0.8251)
0.7547 (0.6767-0.8311)
0.7756 (0.7087-0.8380)
0.7217 (0.6440-0.7942)
0.7572 (0.6824-0.8269)
0.7498 (0.6725-0.8223)
0.7509 (0.6782-0.8211)
0.7015 (0.6186-0.7814)
0.7536 (0.6801-0.8234)
0.7517 (0.6773-0.8201)
0.7808 (0.7094-0.8448)
0.7814 (0.7051-0.8499)
0.7196 (0.6486-0.7873)
0.6532 (0.5657-0.7410)

Table 25. Performance of the evaluated models on the tasks of overall survival prediction, disease-free survival prediction and
disease-specific survival prediction in the colorectal cancer. The mean C-Index and the 95% confidence interval are reported.

Model

OS (H8)

DFS (HS)

DSS (H1)

CHIEF
CONCH
CONCHL1.5
CTransPath
Prov-GigaPath
GPFM
H-Optimus-0
H-Optimus-1
Hibou-L
mSTAR
MUSK
Phikon
Phikon2
PLIP
ResNet50
UNI

UNI2
Virchow
Virchow?2

0.7482 (0.6549-0.8319)
0.7472 (0.6472-0.8374)
0.7522 (0.6505-0.8418)
0.7570 (0.6685-0.8367)
0.7318 (0.6382-0.8159)
0.7370 (0.6357-0.8293)
0.7415 (0.6440-0.8302)
0.7393 (0.6405-0.8309)
0.7161 (0.6053-0.8099)
0.7474 (0.6441-0.8384)
0.7417 (0.6270-0.8312)
0.7281 (0.6284-0.8182)
0.7357 (0.6231-0.8332)
0.7242 (0.6075-0.8231)
0.7226 (0.6052-0.8271)
0.7457 (0.6452-0.8356)
0.7440 (0.6374-0.8390)
0.7300 (0.6269-0.8213)
0.7398 (0.6351-0.8314)

0.7372 (0.6062-0.8450)
0.7197 (0.6068-0.8363)
0.7188 (0.5985-0.8441)
0.7373 (0.6141-0.8478)
0.7319 (0.6103-0.8687)
0.7321 (0.6058-0.8620)
0.7362 (0.6165-0.8707)
0.7375 (0.6180-0.8693)
0.7052 (0.5469-0.8472)
0.7345 (0.6088-0.8635)
0.7209 (0.6097-0.8416)
0.7284 (0.5961-0.8584)
0.7260 (0.5860-0.8554)
0.7092 (0.5954-0.8268)
0.7088 (0.5873-0.8205)
0.7327 (0.6066-0.8578)
0.7338 (0.6142-0.8639)
0.7128 (0.5932-0.8546)
0.7322 (0.6222-0.8606)

0.7035 (0.4491-0.9212)
0.7256 (0.4554-0.9346)
0.7437 (0.4918-0.9326)
0.7311 (0.4654-0.9316)
0.7176 (0.4868-0.9194)
0.7372 (0.4649-0.9375)
0.7327 (0.5036-0.9256)
0.7520 (0.5286-0.9228)
0.7258 (0.4925-0.9219)
0.7420 (0.5252-0.9282)
0.7162 (0.4328-0.9223)
0.7227 (0.4806-0.9158)
0.6935 (0.4582-0.8938)
0.6953 (0.4033-0.9100)
0.6654 (0.3920-0.8936)
0.7555 (0.5434-0.9352)
0.7506 (0.4972-0.9430)
0.7619 (0.5223-0.9446)
0.7678 (0.5256-0.9369)
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Table 26. Hyperparameters of ABMIL for classification and survival prediction in downstream tasks

Hyperparameter | Classification | Survival
Hidden dim 512 512
Dropout 0.25 0.25
Batch size 1 1
Epochs 50 30
Optimizer Adam Adam
Learning rate 2.00E-04 | 2.00E-04
Scheduler Cosine Cosine
Weight decay 1.00E-05 | 1.00E-05
Loss Cross-entropy NLL
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