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ABSTRACT

Precision oncology requires accurate molecular insights, yet obtaining these directly from genomics is costly
and time-consuming for broad clinical use. Predicting complex molecular features and patient prognosis
directly from routine whole-slide images (WSI) remains a major challenge for current deep learning methods.
Here we introduce PathLUPI, which uses transcriptomic privileged information during training to extract
genome-anchored histological embeddings, enabling effective molecular prediction using only WSIs at
inference. Through extensive evaluation across 49 molecular oncology tasks using 11,257 cases among 20
cohorts, PathLUPI demonstrated superior performance compared to conventional methods trained solely on
WSIs. Crucially, it achieves AUC ≥ 0.80 in 14 of the biomarker prediction and molecular subtyping tasks and
C-index ≥ 0.70 in survival cohorts of 5 major cancer types. Moreover, PathLUPI embeddings reveal distinct
cellular morphological signatures associated with specific genotypes and related biological pathways within
WSIs. By effectively encoding molecular context to refine WSI representations, PathLUPI overcomes a key
limitation of existing models and offers a novel strategy to bridge molecular insights with routine pathology
workflows for wider clinical application.

Introduction

The integration of molecular profiling into oncology has revolutionized tumor characterization, enabling
targeted therapies informed by genomic drivers1, 2. However, the clinical implementation of molecularly
targeted therapies remains constrained by the practical limitations of genomic testing, including cost barriers
and analytical latency, which impede timely decision-making3. Computational pathology (CPATH) addresses
this challenge through deep learning-based analysis of hematoxylin and eosin (H&E) stained whole-slide
images (WSIs), aiming to infer molecular characteristics from routine histology4. Illustrated in Figure 1a,
this paradigm has emerged as a critical tool for bridging molecular diagnostics and clinical workflows,
enabling the prediction of investigational biomarkers5, 6, which are molecular features currently under active
clinical investigation, as well as the identification of actionable biomarkers, defined as molecular changes
with established therapeutic relevance7, 8. It also facilitates molecular subtyping9 and enables prognostic
stratification through systematic analysis of tumor morphology10. These capabilities collectively advance the
vision of morphology-driven precision oncology, where ubiquitous histology slides enable the prediction of
molecular characteristics through computational analysis.

Despite the immense potential of CPATH, achieving reliable molecular inference for precision oncology
hinges on accurately deciphering the often complex and subtle relationships between genotype and morphol-
ogy within WSIs. Initial studies demonstrated feasibility in predicting certain key genetic alterations and
prognostic markers11–14, and the recent emergence of powerful pathology foundation models pre-trained on
vast WSI datasets offers strong general feature representations15–17. However, significant challenges remain
in translating these capabilities to predict more complex or nuanced molecular features directly from histology.
For instance, predicting alterations in genes like BRAF, KRAS, or PIK3CA from WSIs has been shown to be
more difficult12, 18, 19, indicating inherent limitations in capturing complex molecular correlates when models
learn exclusively from WSI data, even at scale, hindering the reliable linkage between histological phenotype
and underlying genotype.

To overcome this fundamental limitation, new strategies are needed that can leverage molecular informa-
tion to improve the learning of genotype-correlated histology features, without compromising the ultimate
goal of WSI-based inference in clinical practice. The increasing availability of large-scale datasets pairing
WSIs with rich molecular profiles offers a unique opportunity in this regard. We propose that incorporating
molecular context during model training can significantly improve molecular inference from WSIs. Conse-



quently, we developed PathLUPI, a framework inspired by the learning using privileged information (LUPI)
paradigm20, 21 (Figure 1b). PathLUPI leverages transcriptomic profiles structured according to cancer hall-
mark pathways22 as privileged information exclusively during the training phase. This molecular knowledge
guides the feature extraction process of the CONCH pathology foundation model15, 17, refining its pathology-
specific feature representations to be more indicative of the underlying molecular landscape. Crucially,
the resulting framework yields robust genome-anchored histological embeddings capable of significantly
enhancing the prediction of complex molecular features using only WSIs during inference. This preserves
the scalability and workflow advantages of conventional CPATH methods.

Through a pan-cancer analysis of 11,257 cases from 20 cohorts spanning 13 tumor types, we demonstrate
how privileged genomic supervision resolves key limitations of models solely trained on WSIs (Figure 1c).
We evaluated PathLUPI across 49 diverse molecular oncology tasks, encompassing investigational biomarker
prediction (n=8), actionable biomarker prediction (n=17), molecular subtyping (n=8), and survival prognosis
(n=16). In internal evaluations using the TCGA dataset (N=6,427 cases, 13 cohorts), PathLUPI consistently
achieved superior performance by extracting genome-anchored histological embeddings. Specifically, it
significantly improved prediction accuracy for challenging biomarkers such as BRAF and KRAS (P < 0.001)
and demonstrated improved molecular subtyping capabilities compared to baseline methods. Furthermore,
PathLUPI showed superior (P < 0.001) prognostic performance (C-index) across these cohorts compared to
baselines. Crucially, external validation using 4,830 cases from 7 independent cohorts confirmed PathLUPI’s
resilience to domain shift when assessed on a range of these molecular oncology tasks. Additionally, its
embeddings enabled the discovery of interpretable morphological signatures linked to molecular drivers,
highlighting its potential to bridge molecular insights with routine pathology for broader clinical application.

Results

Study cohort characteristics

To develop and evaluate PathLUPI, we utilized WSIs and matched bulk RNA-seq gene expression with corre-
sponding clinical and molecular annotations from 13 cancer types (N=6,427) available in The Cancer Genome
Atlas (TCGA): bladder cancer (BLCA)23, breast cancer (BRCA)24, colorectal cancer (COAD/READ)25, 26,
esophageal cancer (ESCA)26, head and neck squamous cell carcinoma (HNSC)27, kidney renal clear cell carci-
noma (KIRC)28, glioma (GBM/LGG)29, hepatocellular carcinoma (LIHC)30, lung adenocarcinoma (LUAD)31,
lung squamous cell carcinoma (LUSC)32, gastric adenocarcinoma (STAD)26, melanoma (SKCM)33, and
uterine corpus endometrial carcinoma (UCEC)34. For external validation, we assembled both private and
public cohorts, each comprising only WSIs. The external datasets included locally collected breast cancer
WSIs from Center-1 (N=2,045) and Center-2 (N=1,527), obtained following approval by the respective
institutional review boards, as well as publicly available cohorts from the Clinical Proteomic Tumor Analysis
Consortium (CPTAC, N=406)35 and the EBRAINS Digital Tumor Atlas (N=852)36. This dataset enabled
a rigorous evaluation of PathLUPI across a broad range of prediction tasks. In total, we assessed 48 tasks
spanning 20 cohorts, grouped into four categories: investigational biomarker prediction (n=8), actionable
biomarker prediction (n=17), molecular subtyping (n=8), and patient survival prognosis (n=16). Each task
addressed a clinically or biologically relevant scenario, ranging from genomic alterations to patient outcomes,
providing a robust benchmark for assessing the generalizability and clinical utility of PathLUPI. Detailed
task definitions and statistics are provided in the Methods section and Extended Data Tables 5–7.

Overview of the PathLUPI architecture

PathLUPI learns genome-anchored embeddings for molecular prediction from histology via a dual-branch
training framework under the LUPI paradigm20, depicted in Figure 1b. The privileged branch processes
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Figure 1. Overview of the study. a. Scope of PathLUPI framework development and validation phases,
covering 13 distinct cancer types among essential molecular oncology tasks: Investigational biomarker
prediction, actionable biomarker prediction, molecular subtyping, and survival prognosis. b. Schematic of
PathLUPI paradigm. By leveraging the learning using privileged information (LUPI) paradigm, the model
integrates transcriptomic pathway signatures as privileged supervisory signals during training to refine WSI
representation learning. This process enables molecular-aware predictions using WSI images alone during
inference. c. Performance comparison of PathLUPI against four representative frameworks (ABMIL, CLAM,
DTFD, TransMIL) across 49 molecular oncology tasks, including: Investigational biomarker prediction
(n=8), actionable biomarker prediction (n=17), molecular subtyping (n=8), and survival prognosis (n=16). *
indicates tasks with external validation cohorts.
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morphological features extracted from WSIs using CONCH17 and paired, pathway-grouped transcriptomic
features processed via multilayer perceptron (MLP). These features are fused using a cross-attention mech-
anism, with weights shared across both branches, enabling the learning of direct phenotype-genotype
associations. Concurrently, the distillation branch receives identical WSI features but lacks the corresponding
transcriptomic profile, aiming to emulate the privileged branch. It first reconstructs WSI features into a corre-
sponding simulated transcriptomic representation, which is then fused with the initial morphological features
via the shared cross-attention mechanism. This shared architecture compels the distillation branch to simulate
privileged multimodal context integration without direct transcriptomic access. Multilevel alignment losses,
including reconstruction, attention alignment, and representation consistency, enforce effective knowledge
transfer by driving the distillation branch’s internal representations and attention patterns to approximate
those of the privileged branch. Consequently, the distillation branch learns to generate genome-anchored
embeddings from WSI input alone, representing morphological features imbued with learned molecular
context. During inference, only the optimized distillation branch is activated for predictions. A detailed
methodology is provided in the Methods section.

PathLUPI enhances biomarker prediction

We first evaluated the capability of PathLUPI to predict clinically relevant molecular biomarkers directly
from WSIs, testing both investigational biomarkers informing diagnosis and prognosis (e.g., TP53 and TMB
status) and actionable biomarkers guiding targeted therapies (e.g., BRAF, FGFR3, KRAS status)37, 38. As
baselines, we included ABMIL39, CLAM40, DTFD41, and TransMIL42, which are solely trained on WSIs and
commonly employed as benchmarks in the literature11–14. More details are provided in the Methods section.

By integrating transcriptomic priors via the LUPI paradigm, PathLUPI significantly improves biomarker
prediction accuracy. By integrating transcriptomic priors via the LUPI paradigm, PathLUPI significantly
improves biomarker prediction accuracy. Illustrated in Figure 2, among 25 prediction tasks, PathLUPI
consistently outperformed the strongest baseline for each task. Averaged over all tasks, PathLUPI yielded a
mean AUC increase of 4.48% relative to the best-performing baseline. This improvement was observed in
both internal validation (+4.83%, P < 0.001) and external validation (+2.68%, P < 0.001), indicating robust
generalizability to independent cohorts. For actionable biomarkers, the mean AUC increase was 5.11%, while
for investigational biomarkers, the increase was 2.78%. PathLUPI achieved an AUC of at least 0.80 in over
half of all tasks, and at least 0.90 in 20% of tasks, with the highest frequencies observed among actionable
biomarkers, highlighting its clinical potential.

Performance gains were especially pronounced for clinically actionable biomarkers. In the prediction of
BRAF mutation in colorectal cancer, PathLUPI achieved an internal AUC of 0.840, corresponding to a 8.9%
increase over DTFD, and an external AUC of 0.655, a 4.3% improvement over CLAM (P < 0.001). For KRAS
mutations, the internal AUC was 0.705, representing a 10.1% increase relative to CLAM (P < 0.001). For
PIK3CA mutations in breast cancer, PathLUPI attained an internal AUC of 0.726, a 4.3% improvement over
TransMIL (P < 0.001), while the external AUC of 0.631 was comparable to the best baseline. In addition, for
IDH1 mutation status in gliomas, PathLUPI achieved near-perfect accuracy, with an internal validation AUC
of 0.992. In external validation, its AUC of 0.920 was comparable to that of the second-best method, CLAM.
Overall, PathLUPI matched or outperformed the best baseline models trained solely on WSIs across nearly
all tasks, with only minor exceptions in external PIK3CA and TP53 mutation prediction. Comprehensive
results and baseline comparisons are summarized in Extended Data Tables 1 and 2.
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Figure 2. Results of biomarker prediction across 25 tasks. a. Bar charts of mean AUC for each method. In
each subfigure, the relative improvement of PathLUPI over the best baseline method and corresponding
statistical significance is indicated. Error bars represent 95% confidence intervals, and the centers correspond
to the mean AUC values. b. Receiver operating characteristic (ROC) curves for each task. ROC curves were
plotted by aggregating out-of-fold predictions from all 5 folds and applying 1,000 bootstrap resamplings. *
denotes external cohorts. Detailed results are presented in Extended Data Tables 1 and 2.

PathLUPI improves molecular subtyping

We further assessed the utility of PathLUPI for molecular subtyping, a critical task in precision oncology that
classifies tumors into biologically distinct groups based on their molecular profiles to inform prognosis and
guide therapeutic decisions43, 44. Rather than isolated molecular events, it involves complex, multi-omics
signatures, requiring models to detect subtle histological patterns and integrate them to reflect system-level
transcriptomic changes. Addressing the need for comprehensive benchmarks, our study presents the most
extensive evaluation of WSI-based molecular subtyping to date, systematically assessing performance across
seven distinct cancer types. These include both organ-specific tasks and multi-type subtyping tasks, such as
colorectal cancer (CRC)24, glioma subtypes (GBMLGG)29, and a pan-gastrointestinal (PanGI) task26 that
unifies several gastrointestinal malignancies under a single subtyping framework.

Despite the inherent difficulty of this task, PathLUPI achieved the highest overall mean AUC in both
internal and external validations, as illustrated in Figure 3. In internal validation, PathLUPI reached a
mean AUC of 0.856, representing a 1.47% improvement over the best-performing baseline (P < 0.001). In
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Figure 3. Results of molecular subtyping on 8 tasks. a. Bar charts of mean AUC for each method. In each
subfigure, the relative improvement of PathLUPI over the best baseline method and corresponding statistical
significance is indicated. Error bars represent 95% confidence intervals, and the centers correspond to the
mean AUC values. b. Receiver operating characteristic (ROC) curves for each task. ROC curves were plotted
by aggregating out-of-fold predictions from all 5 folds and applying 1,000 bootstrap resamplings. * denotes
external cohorts. Detailed results are presented in Extended Data Table 3.

external validation, PathLUPI maintained its advantage with a mean AUC of 0.727, surpassing the strongest
comparator by 2.4% (P < 0.001). Although the absolute performance gains were modest compared to those
observed in biomarker prediction, these results reflect the high level of difficulty associated with molecular
subtyping from WSI data. Importantly, PathLUPI consistently outperformed all baselines across cancer types
and subtyping tasks, demonstrating robust generalizability. Detailed results are available in Extended Data
Table 3.

When applied to the more challenging task of molecular subtyping, PathLUPI again demonstrated the
robustness observed during biomarker prediction. These findings reinforce that the integration of privileged
structured transcriptomic supervision via the LUPI paradigm provides a reproducible advantage to achieve
the stability and generalizability crucial for reliable molecular subtyping.

PathLUPI advances survival prognosis

To further evaluate the clinical relevance of PathLUPI’s genome-anchored embeddings, we assessed its
performance in survival prognosis, a vital component of oncological assessment and treatment planning.
We benchmarked PathLUPI against established baselines across a broad pan-cancer setting, encompassing
12 distinct cancer types for internal validation and 3 independent external validation cohorts. Evaluation
across these diverse cohorts revealed PathLUPI’s strength in survival prognosis, marked by the highest
average concordance index (C-index) overall, as depicted in Figure 4. revealed PathLUPI’s strength in
survival prognosis, marked by the highest average concordance index (C-index) overall. Among the baselines,
TransMIL consistently emerged as the strongest comparator in internal validation, while CLAM achieved the
best performance in external cohorts.

In internal validation, PathLUPI achieved a mean C-index of 0.693, representing a 5.19% improvement
over TransMIL (P < 0.001). Notably, PathLUPI exceeded the recognized clinical benchmark of 0.7045

in several major cancer types, including BRCA (0.710), LGG (0.786), LIHC (0.776), KIRC (0.747), and
UCEC (0.756). The C-index of 0.661 in GBM represents a substantial 14.8% improvement over the
baseline, underscoring PathLUPI’s exceptional prognostic performance in this highly challenging cancer
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Figure 4. Results of survival prognosis on 16 tasks. a. Bar charts of mean AUC for each method. In each
subfigure, the relative improvement of PathLUPI over the best baseline method and corresponding statistical
significance is indicated. Error bars represent 95% confidence intervals, and the centers correspond to the
mean AUC values. b. Kaplan-Meier survival curves for high-risk and low-risk groups as predicted by
PathLUPI. * denotes external cohorts. Detailed results are presented in Extended Data Table 4.

type. These results, together with consistent improvements across most cancer types, underscore the robust
and generalizable nature of PathLUPI’s prognostic capabilities. In external validation, PathLUPI maintained
superior performance, achieving a mean C-index of 0.640 and surpassing the strongest baseline, CLAM
(0.613, +4.35%, P < 0.001). Consistent improvements were observed in multiple cohorts, such as LUSC*,
where PathLUPI outperformed DTFD (0.649, +2.84%, P < 0.001). These findings collectively demonstrate
the resilience and broad applicability of PathLUPI across both internal and external datasets. A summary of
results for all cancer types is provided in Extended Data Table 3.

These quantitative improvements signify enhanced patient stratification power, as visually supported by
Kaplan-Meier analyses where PathLUPI achieved consistently clear and statistically significant separation
between predicted high-risk and low-risk patient groups. Importantly, this strong prognostic ability was
maintained in the three external validation cohorts, where PathLUPI again outperformed all comparators,
demonstrating resilience to domain shifts. Together, these results demonstrate that PathLUPI’s integration of
privileged transcriptomic supervision not only enhances quantitative performance but also delivers robust and
generalizable patient stratification across diverse cancer types and clinical cohorts, supporting its translational
value for future clinical deployment46, 47.

PathLUPI reveals potential genetic-morphological links

Beyond quantitative improvements in prediction tasks, PathLUPI provides an opportunity to explore and
visualize the spatial relationships between molecular alterations and histopathological features. To achieve
this, we systematically analyzed the cross-attention weights learned by the model, which quantify the
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contribution of each histological image patch to the prediction of specific transcriptomic pathways. Here, we
define local interpretability as the explanation of model predictions at the level of individual WSIs, revealing
which tissue regions are most relevant for a specific task object. In contrast, global interpretability refers to
cohort-level analysis, identifying recurrent morphological patterns and cellular compositions associated with
molecular features across multiple cases. We performed both local and global interpretability analyses for all
internal biomarker prediction tasks. Figure 5 presents detailed results for two representative biomarkers, BRAF
in colorectal cancer and EGFR in lung adenocarcinoma, both of which are well-established driver mutations
with distinct morphological implications48, 49. While these examples illustrate clear genotype–phenotype
associations, the morphological correlates of many other molecular alterations are not yet fully understood.
PathLUPI provides a systematic approach to further investigate such relationships. Results for all other tasks
are provided in Extended Data Figures 1–15.
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Figure 5. Local and global interpretability analyses of PathLUPI for two representative biomarker
prediction tasks: colorectal cancer with BRAF mutation and lung adenocarcinoma with EGFR
mutation. a. Spatial attention heatmaps highlighting histological regions most relevant for molecular
prediction in mutated samples. b. Quantification of cellular composition (neoplastic, inflammatory, epithelial,
connective, dead cells) in the top 1% high-attention patches across the exemplar cohorts. c. Shapley value
attribution of the top-3 and bottom-3 transcriptomic pathways influencing model predictions in each cohort.
Results for other tasks can be found in the Extended Data Figures 1-15.

At the local level, we extracted the spatial attention weights from the distilled branch of PathLUPI for each
WSI, quantifying the relative contribution of individual image patches to the prediction of specific molecular
tasks. By mapping these normalized attention scores back onto the original tissue slides, we visualized the
spatial distribution of genotype–phenotype associations, highlighting morphological regions most strongly
implicated in the model’s molecular predictions. As shown in Figure 5a, these heatmaps often revealed that,
in slides from patients with different molecular characteristics, the model’s attention was focused on tissue
regions that display well-known morphological features linked to these factors. For example, in colorectal
cancer cases with BRAF mutations, the attention map highlighted areas with increased flat or sessile areas,
mucinous histologic regions, and serrated glandular structures commonly seen in BRAF-mutated tumors48.
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Similarly, for lung adenocarcinoma with EGFR mutations, the attention map tended to concentrate on regions
showing micropapillary and lepidic growth patterns, reflecting histological changes commonly linked to
EGFR mutations50, 51. These findings indicate that PathLUPI’s attention maps not only show which regions
are used for prediction, but also reflect real, recognizable histological changes associated with specific genetic
alterations.

At the global level, we conducted two analyses to elucidate the morphological and functional basis
of model predictions across the cohort. First, we identified the top 1% of highest-attention patches from
all correctly predicted WSIs for each molecular task, and characterized their cellular composition using
CellViT++52, 53. This revealed characteristic distributions of tumor, inflammatory, epithelial, connective tissue,
and dead cells associated with specific molecular features, as illustrated in Figure 5b. For BRAF-mutated
colorectal cancers, high-attention regions showed marked enrichment of neoplastic cells, while wild-type
samples exhibited higher proportions of connective tissue and epithelial cells (P < 0.001). Inflammatory
and dead cell fractions were comparable between groups. These observations are consistent with previous
single-cell and spatial profiling studies, which have demonstrated increased tumor cellularity and distinct
stromal characteristics in BRAF-mutated tumors54, 55. In contrast, for EGFR-mutated lung adenocarcinoma,
the cellular composition of high-attention regions showed a more complex pattern. While neoplastic cells
remained predominant in both mutated and wild-type samples, EGFR-mutated cases exhibited significantly
higher proportions of inflammatory and connective tissue cells (P < 0.01), as well as a modest increase
in epithelial cells (P < 0.001). This unique cellular composition signature aligns with previous findings
from single-cell RNA sequencing studies56, 57, which demonstrated that EGFR-driven lung adenocarcinomas
reshape their microenvironment by recruiting specific inflammatory cells and modifying stromal components.
Second, by aggregating pathway-level attention scores across the cohort and applying a gradient-based Shap-
ley value approximation58, we quantified the functional relevance of biological pathways, thereby highlighting
the most influential pathways driving predictions for each molecular task and uncovering context-specific
biological processes with clear morphological correlates. Illustrated in Figure 5c, for colorectal cancers with
BRAF mutations, the model’s highest-attention regions were characterized by distinct histological features,
and pathway analysis identified EPITHELIAL_MESENCHYMAL_TRANSITION, MYC_TARGETS_V2, and
WNT_BETA_CATENIN_SIGNALING as the most influential pathways in BRAF-mutant colorectal cancer,
in line with previous studies demonstrating their involvement in tumor progression and molecular subtype
specification59–61. Similarly, in lung adenocarcinoma with EGFR mutations, G2M_CHECKPOINT, OXIDA-
TIVE_PHOSPHORYLATION, and E2F_TARGETS emerged as top contributors, corroborating established
roles for these pathways in the oncogenic processes underlying EGFR-driven lung cancer62, 63.

Collectively, these qualitative and quantitative interpretability analyses support the existence of robust
genotype–phenotype correlations at the tissue level and demonstrate that PathLUPI not only delivers accurate
predictions but also uncovers spatially and functionally meaningful links between molecular alterations
and histological features. By enabling interpretable, spatially resolved visualization of these relationships,
PathLUPI offers new opportunities for hypothesis generation and biological discovery in cancer research.

Validating the impact of foundation model embeddings in PathLUPI

To rigorously evaluate the impact of different foundation models for pathology embedding extraction within
PathLUPI, we performed an ablation study in which the WSI feature extraction backbone was systematically
replaced with alternative encoders. We compared three pathology-specific foundation models, PLIP64, UNI15,
and CONCH17, and compared them with the widely used general-purpose ResNet50 baseline12, 19. Each
configuration was independently trained and evaluated across four clinically relevant molecular oncology
tasks, as summarized in Figure 6a.
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Figure 6. Ablation study evaluating the impact of different foundation models on PathLUPI performance
across all internal tasks. a. Bridge plots summarizing model performance (AUC or C-index) for each task
category using various feature extractors. The overall performance improvement from ResNet50 is indicated
in the top-right corner of each subfigure. b. Detailed performance comparison for individual tasks, with bars
representing mean AUC or C-index across 5-fold cross-validation. Overall improvement and significance test
results are displayed only when PathLUPI achieves the best performance in a given task.
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Across all evaluated tasks, all three pathology-specific foundation models consistently outperformed
the ResNet50 baseline, with CONCH achieving the highest mean performance across tasks. Overall, for
investigational biomarker prediction, CONCH achieved a mean AUC of 0.806, representing an absolute
improvement of 12.8% over ResNet50. In actionable biomarker prediction, CONCH delivered a 9.4% gain,
while for molecular subtyping, the improvement was most pronounced, with CONCH increasing AUC by
11.7%. In survival prognosis, CONCH achieved a C-index of 0.693, corresponding to a 5.5% increase over the
general-purpose baseline. Notably, both PLIP and UNI also provided consistent gains across all tasks, though
CONCH demonstrated the highest performance throughout. However, detailed cohort-level comparisons
depicted in pretraining strategies Figure 6b revealed that no single foundation model was universally optimal.
In several specific cohorts, such as BRCA-ER, NSCLC-TMB, CRC-Mol, and HNSC-Surv, UNI outperformed
CONCH, highlighting the complementary strengths of different pathology-specific.

These findings establish the critical importance of pathology-specific pretraining for histopathological
representation learning. Compared to the generic vision backbone ResNet, all domain-adapted foundation
models deliver markedly superior predictive accuracy, robustness, and generalization across diverse clinical
endpoints, confirming that domain adaptation is foundational for effective histological analysis. Notably,
the systematic ablation reveals that both the strategy and scale of pretraining are crucial determinants of
downstream performance. While PLIP benefits from multimodal supervision, its limited dataset constrains the
expressiveness of its learned representations. In contrast, UNI, self-supervised trained on millions of pathology
images, consistently surpasses PLIP, indicating that large-scale self-supervised visual pretraining can provide
more robust and generalizable features than visual-language models constrained by smaller datasets. The
highest performance is achieved by CONCH, which integrates both massive data scale and expert-level
semantic grounding. This combination demonstrates that neither data scale nor semantic supervision alone
is sufficient; their integration is essential for maximizing the representational capacity of computational
pathology models. Collectively, these results underscore the need for continued innovation in multimodal
and large-scale pretraining strategies to further enhance the connection between histological phenotypes and
molecular genotypes, ultimately advancing the clinical translation of computational pathology.

Discussion

In this study, we present PathLUPI, an LUPI framework that systematically integrates transcriptomic knowl-
edge into the training process of histology models. While numerous deep learning models have been
developed to predict molecular characteristics from routine H&E whole-slide images, they often underutilize
the paired molecular data available during training, typically treating transcriptomic profiles merely as
prediction targets rather than as explicit sources of guidance. In contrast, PathLUPI anchors patch-level
features to gene expression signals structured by biological pathways, thereby transforming standard H&E
WSIs into genome-aware embeddings that preserve both visual and molecular information. Comprehensive
evaluation across 49 benchmark tasks, encompassing 13 cancer types and 20 cohorts with a total of 11,257
patients, demonstrates that these embeddings consistently and substantially outperform traditional WSI-
only pipelines. Notably, PathLUPI enhances the prediction of driver mutations, immunohistology markers,
molecular subtypes, and survival risk. Furthermore, the pathway-based structure introduced during training
enables the identification of interpretable relationships between tissue morphology and underlying biology,
thereby providing novel insights into spatial genotype–phenotype associations that are typically challenging
to discern.

Addressing the central challenge of timely and scalable molecular profiling in oncology, our work aligns
with a broader clinical need to reduce reliance on genomic sequencing. While next-generation sequencing
remains the gold standard for comprehensive molecular characterization, it is often constrained by high cost,
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long turnaround times, and limited accessibility in many clinical settings. Biological advances such as liquid
biopsy and circulating tumor cell (CTC) analysis have improved efficiency, but these methods still face issues
of variable sensitivity, cancer-type specificity, and inconsistent performance across disease stages65–67. In
contrast, computational pathology (CPATH) offers a practical and scalable solution by leveraging routinely
available H&E-stained slides for molecular inference. Unlike these biologically-based assays, CPATH can
rapidly scale with increasing digital pathology data, and its performance is expected to improve as larger and
more diverse datasets become available. To further advance the field, there is a growing need for frameworks
that incorporate prior biological knowledge during model training, thereby guiding feature extraction toward
histological patterns most indicative of the underlying molecular landscape. Our work demonstrates that
the integration of pathway-level knowledge, such as the Hallmarks of Cancer22, can substantially improve
both predictive performance and interpretability. While Hallmark gene sets provide a robust starting point,
more recent pathway resources such as Reactome68, KEGG69, and even data-driven gene sets may offer
complementary or more context-specific representations. Continued exploration of these resources will
further enhance the scalability and interpretability of molecular profiling in oncology.

In addition to improving interpretability and robustness through the use of biological priors, our pathway-
informed framework demonstrates the capacity to capture spatially structured molecular variation embedded
within histological patterns. This capability suggests that, when properly guided, histology-based models
can approximate spatial molecular landscapes that are otherwise accessible only through spatial transcrip-
tomics (ST). While ST provides high-resolution spatial molecular profiling, its widespread adoption remains
constrained by practical factors discussed above. By leveraging global transcriptomic supervision, our
framework enables the extraction of spatially coherent, genome-anchored histological features from routine
H&E slides. These representations can be readily used for spatial hypothesis generation, pre-screening of
samples for downstream spatial profiling, and guiding spatially targeted research in settings where ST is not
feasible. Thus, PathLUPI expands the toolkit for spatial molecular exploration in oncology, offering a scalable
and accessible alternative for investigating spatial heterogeneity in clinical contexts. Although multimodal
approaches remain the gold standard when comprehensive spatial and molecular data are available, PathLUPI
fills a critical gap by enabling spatial molecular inference in settings where such data are lacking, thereby
complementing and extending the reach of spatial biology in clinical oncology70, 71.

Despite these advances, several challenges remain before clinical translation can be fully realized. First,
the framework’s predictive power is intrinsically linked to the availability of extensive, high-quality paired
WSI and molecular data, particularly transcriptomic profiles, during training72. The current scarcity of
such large-scale multimodal resources presents a substantial obstacle for the field, widely recognized as
a key challenge for multimodal machine learning in oncology72, 73. Second, despite validation efforts
across multiple external cohorts, achieving consistent performance across diverse clinical settings remains
challenging due to domain shifts. These shifts arise from inherent variations in slide preparation, staining
protocols, image acquisition across different centers, and potential dataset biases, highlighting the need to
further enhance model generalizability72. Third, the implementation of this work utilizes transcriptomics as
the sole privileged modality. The integration of additional molecular layers, such as proteomics, epigenomics,
or metabolomics, may capture complementary aspects of tumor biology and further enrich the learned
representations74. Addressing these limitations will require concerted community efforts in multimodal
data curation, the advancement of data-efficient learning strategies, and prospective validation in real-world
clinical environments.
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Methods

Patient cohorts and ethics

This study adhered to the Declaration of Helsinki and the International Ethical Guidelines for Biomedical
Research Involving Human Subjects, with ethical approval granted by the Human and Artifact Research
Ethics Committee of The Hong Kong University of Science and Technology (HREP-2024-0423). We
analyzed anonymized WSIs and transcriptomic profiles from The Cancer Genome Atlas (TCGA), accessed
via the Genomic Data Commons Portal (https://portal.gdc.cancer.gov/) and cBioPortal75, encompassing
13 prevalent solid cancer types: bladder cancer (BLCA)23, breast cancer (BRCA)24, colorectal cancer
(COAD/READ)25, 26, esophageal cancer (ESCA)26, head and neck cancer (HNSC)27, renal cell carcinoma
(KIRC)28, glioma (GBM/LGG)29, hepatocellular carcinoma (LIHC)30, lung adenocarcinoma (LUAD)31, lung
squamous cell carcinoma (LUSC)32, gastric cancer (STAD)26, melanoma (SKCM)33, and uterine corpus
endometrial carcinoma (UCEC)34. External validation incorporated both institutional and public datasets.
Locally collected breast cancer specimens were obtained from Center-1 and Center-2 with approvals from
their respective Research Ethics Boards. These were complemented by publicly available data from the
Clinical Proteomic Tumor Analysis Consortium (CPTAC)35 and the EBRAINS Digital Tumor Atlas36.

Molecular labels and clinical annotations

To evaluate the generalizability of the PathLUPI framework across diverse clinical and molecular prediction
problems, we curated a set of 49 molecular oncology tasks spanning 13 cancer types. These tasks were defined
based on biologically meaningful patient-level labels, including somatic mutations, immunohistochemistry
(IHC) markers, molecular subtypes, and overall survival (OS). All internal tasks were constructed using TCGA
data. Labels were matched to TCGA patient IDs, and for patients with multiple WSIs, slide-level features were
aggregated into patient-level representations. Somatic mutation tasks were based on single-nucleotide variants
(SNVs) and small insertions or deletions (INDELs), obtained from TCGA via the UCSC Xena platform76.
We identified 15 actionable biomarker tasks by cross-referencing mutated genes with FDA-approved targeted
therapies (https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/approved-drug-list), and
9 investigational biomarker tasks based on frequently mutated genes lacking approved therapies, following
prior work77. IHC-based labels (e.g., ER, PR, HER2, TNBC) were extracted from TCGA clinical annotations.
Molecular subtype tasks were derived using TCGAbiolinks, including PAM50 status for BRCA24, and
CMS status for colorectal cancer (COAD/READ)25. Survival prediction tasks used OS time and event
status, available across all cancer types. Public external datasets were obtained from the CPTAC program
via cBioPortal75 and the institutional database maintained by EBRAINS36. Private external datasets were
collected through collaborations with partner hospitals under appropriate data use agreements. All external
datasets were processed using the same pipeline as TCGA to ensure consistency in feature extraction and
label definition. A summary of all tasks, associated labels, and cancer-type coverage is provided in Extended
Data Table 5.

Genome-anchored representation learning with privileged supervision

To enable biomarker prediction from WSIs while leveraging transcriptomic supervision during training, we
adopt a dual-branch architecture under the learning using privileged information (LUPI) paradigm20, 21. Each
training case is denoted as Ci = (Wi,gi), where Wi = {W (1)

i ,W (2)
i , . . .} refers to one or more WSIs associated

with case i, and gi ∈ Rd is the corresponding gene expression profile. Each WSI in Wi is independently
processed into patch-level features, which are subsequently concatenated across all slides to form a unified
image representation for the case.
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Patch-level feature extraction and re-embedding. Each slide W (s)
i ∈Wi is divided into non-overlapping

patches of size 512×512 pixels at 20× magnification. We use the CONCH foundation model17, a pathology-
specific pretrained encoder, to extract patch-level embeddings v(s)j ∈ Rdv , where j indexes the patches in

slide W (s)
i , and dv = 512 denotes the patch embedding dimension. While these embeddings capture rich

domain-specific information, they are derived in a task-agnostic manner and may not fully capture the
fine-grained morphological cues that are potentially important for biomarker prediction. To mitigate this
limitation, we incorporate a region-aware re-embedding transformer (RRT) module78, which aims to refine the
original features by modelling local structures and spatial dependencies across tissue regions. Specifically, we
partition each slide into R = 50 latent spatial regions, corresponding to the number of transcriptomic pathways
used in the subsequent step, to encourage the model to associate tissue patterns with biological processes.
The re-embedded features retain the original dimensionality but carry richer contextual information. We
denote the set of re-embedded patch features for slide i as Ṽi = [ṽ1; . . . ; ṽNi ] ∈ RNi×dv , where Ni is the number
of patches in slide i. These features serve as structured inputs for subsequent cross-modal alignment.

Transcriptomic embedding. Each gene expression profile gi ∈ Rd is a high-dimensional vector represent-
ing the transcriptomic state of case i. To incorporate biological structure, we partition the gene vector into
P = 50 subsets based on the Hallmark gene sets from MSigDB79, each corresponding to a distinct biological
pathway. For each pathway p, we extract the associated subvector g(p)

i ∈RGp , and encode it using a dedicated
multilayer perceptron (MLP) fp : RGp → Rdv . Since the number of genes Gp varies among pathways, each
MLP is independently parameterized. The resulting embedding h(p)

i = fp(g
(p)
i ) provides a pathway-level fea-

ture vector in a shared latent space. Concatenating all pathway embeddings yields a structured transcriptomic
representation Zi = [h(1)

i ; . . . ;h(P)
i ] ∈ RP×dv . This structured format facilitates fine-grained alignment with

WSI-derived features in the privileged branch.

Privileged branch. The privileged branch integrates transcriptomic signals into morphological representa-
tion learning by aligning image features with pathway-level molecular embeddings. To this end, we treat the
transcriptomic matrix Zi ∈ RP×dv as a set of biologically informed queries that attend to the re-embedded
patch feature Ṽi ∈ RNi×dv through the cross-attention mechanism. This allows each pathway embedding
to selectively extract morphological patterns from spatial regions associated with its biological function.
Specifically, attention weights ααα

priv
i ∈RP×Ni are computed as ααα

priv
i = softmax((ZiWq)(ṼiWk)

⊤/
√

dk), where
Wq ∈ Rdz×dk and Wk ∈ Rdv×dk are learnable projection matrices. The attended features are then obtained via
Fpriv

i = ααα
priv
i (ṼiWv), resulting in a pathway-aligned representation of shape RP×dz . Finally, we apply gated

attention pooling across pathways to produce a slide-level vector zpriv
i ∈ Rdz . Finally, we apply a learnable

gated attention mechanism to aggregate pathway-level features into a slide-level representation zpriv
i , enabling

the model to adaptively weigh biological pathways according to their morphological relevance for prediction.

Distilled branch. To enable inference without transcriptomic input, the distilled branch learns to approxi-
mate the privileged representation using visual information alone. Instead of relying on measured gene expres-
sion, it derives a set of pseudo-pathway embeddings Ẑi ∈ RP×dv from the re-embedded feature Ṽi ∈ RNi×dv ,
capturing morphological patterns that are predictive of pathway activity. These pseudo-embeddings serve
as queries in the same cross-attention mechanism with shared parameters, producing attention weights
αααdistill

i ∈ RP×Ni and attended features Fdistill
i ∈ RP×dz . The same gated attention layer then aggregates these

features into a slide-level vector zdistill
i ∈Rdz , which is passed through the shared prediction head. This design

enables the distilled branch to emulate pathway-aware inference in the absence of transcriptomics data.

Multi-level alignment and training objective. To enable the distilled branch to approximate the privileged
branch, we introduce auxiliary alignment objectives at three levels. At the pathway level, we apply a
reconstruction loss that combines ℓ1 and soft cross-entropy terms, defined as Lrec = ∑

P
p=1(∥ĥ(p)

i −h(p)
i ∥1 +

SCE(ĥ(p)
i ,h(p)

i )). To promote consistency in spatial focus and global understanding, we additionally align
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the attention maps and slide-level representations of the two branches, resulting in losses Lattn and Lrep,
respectively. These alignment losses are further integrated with task-specific supervision to form the overall
training objective. Each task is formulated as either a classification or a survival prediction problem, optimized
via cross-entropy or negative log-likelihood with ℓ1 regularization, respectively. The supervised loss is defined
as Lsup = L priv

sup +L distill
sup , where each term aggregates task-specific losses. The total loss is then given by

Ltotal = Lsup +λ (Lrec +Lattn +Lrep), where λ controls the strength of auxiliary alignment.

Inference. During inference, only the distilled branch is activated. Given a new case Ci = (Wi, ·), where
transcriptomic data is unavailable, patch-level features are extracted and re-embedded, followed by pseudo-
pathway regression and cross-attention integration. The resulting representation zdistill

i supports transcriptome-
informed predictions directly from WSI.

Interpretability analysis

To evaluate the biological plausibility and clinical interpretability of the model’s predictions, we conducted
interpretability analysis from two perspectives: local interpretability, focusing on individual WSIs, and
global interpretability, capturing patterns across the patient cohort for each molecular oncology task.

Local interpretability. To visualize the spatially resolved genotype–phenotype associations captured by the
model, we analyzed attention weights from the distilled branch of our framework. For each WSI, we retrieved
the attention matrix αααdistill

i ∈ RP×Ni , where each element α
(p, j)
i quantifies the relative contribution of patch j

to pathway p. Patch-level importance scores were then computed by averaging attention across all pathways
as ᾱαα i =

1
P ∑

P
p=1 ααα

(p,:)
i ∈ RNi . Since raw attention values are not directly comparable across samples, the

resulting scores were transformed into percentiles ranging from 0 to 1, with higher values indicating stronger
model attribution. These normalized scores were subsequently mapped back to the spatial coordinates of the
original WSIs, enabling visualization of the inferred genotype–phenotype associations.

Global interpretability. To uncover cohort-level morphological and functional patterns underlying model
predictions, we performed global interpretability analyses from two distinct perspectives. First, to characterize
morphological features associated with high-confidence predictions, we identified the top 1% highest-
attention patches across all correctly predicted WSIs for each task. This proportion was chosen to ensure that
selected patches are both abundant and representative of informative regions. We then analyzed the cellular
composition of these patches using CellViT++52, 53, which classifies cells into five categories: tumor cells
(red), inflammatory cells (green), connective tissue (blue), epithelial cells (yellow), and dead cells (orange).
Second, to assess the functional relevance of each biological pathway at the cohort level, we analyzed the
cross-attention matrix αααdistill

i ∈RP×Ni from the distilled branch of the framework. For each correctly predicted
WSI, a pathway-level attention vector was computed by averaging over patches: ᾱαα i =

1
Ni

∑
Ni
j=1 ααα

(:, j)
i ∈ RP,

where each element reflects the total attention received by a pathway from all patches. These vectors
were aggregated across the cohort, and a gradient-based Shapley value approximation58 was applied to the
pathway-level attention vector of each WSI to estimate the individual contribution of each pathway to the
model’s prediction. Finally, Shapley values were averaged across all correctly predicted WSIs within the
cohort to obtain cohort-level pathway importance, which was visualized as bar plots to highlight the most and
the least influential biological processes.

Implementation details

To benchmark the effectiveness of our PathLUPI framework, we compared it against several state-of-the-art
baselines. These include ABMIL39, CLAM40, DTFD41, and TransMIL42, all of which rely solely on WSI
for molecular oncology tasks, employing different variants of attention-based aggregation architectures. All
models were implemented in PyTorch80. WSI patching and attention heatmaps generation are through the
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CLAM toolbox40. Cell-level quantification and analysis were conducted using CellViT++52, 53, a transformer-
based framework specifically optimized for generalized cell segmentation and representation in histopathology.
Model interpretability was assessed using SHAP (v0.46.0)81 to compute Shapley values. Data processing and
visualization were conducted using NumPy (v1.24.1), pandas (v1.3.5), scikit-learn (v1.3.2), SciPy (v1.11.4),
Matplotlib (v3.5.3), and Seaborn (v0.12.2). Each task-specific model was trained using five-fold cross-
validation with an 80:20 train–validation split. For evaluation on external datasets, we applied each of the
five cross-validation models independently and reported the average of their performance metrics, providing
a more reliable estimate of model performance. Performance metrics were estimated using 1,000 bootstrap
resamples to compute means and 95% confidence intervals (CIs). Statistical significance between models
was assessed using a one-sided Wilcoxon signed-rank test82, following prior work83, 84. All experiments
were conducted on a single NVIDIA RTX 3090 GPU with 24 GB of memory. A complete list of model
architectures and training details are provided in Extended Data Table 8.

Data Availability
WSIs and corresponding transcriptomics profile from TCGA cohort were obtained from the public Genomic
Data Commons (GDC) portal (https://portal.gdc.cancer.gov). Similarly, WSIs from the Clinical Proteomic
Tumor Analysis Consortium (CPTAC) cohort were retrieved through the same platform. Private institutional
cohort WSIs were obtained under data transfer agreements with collaborating hospitals. These datasets are
not publicly available due to patient privacy obligations, institutional review board requirements, and data use
agreements. However, researchers interested in accessing de-identified data may submit a reasonable request
directly to the corresponding authors, subject to obtaining the necessary ethical approvals and complying
with institutional policies.

Code Availability
All model source code is available under a CC BY-NC-ND 4.0 license at a GitHub repository.
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Extended Data Figure 1. Local and global interpretability analyses of PathLUPI for bladder cancer with
FGFR3 mutation status. a. Spatial attention heatmaps highlighting histological regions most relevant for
molecular prediction in mutated samples. b. Quantification of cellular composition (neoplastic, inflammatory,
epithelial, connective, dead cells) in the top 1% high-attention patches across the cohort. c. Shapley value
attribution of the top-3 and bottom-3 transcriptomic pathways influencing model predictions in each cohort.
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Extended Data Figure 2. Local and global interpretability analyses of PathLUPI for breast cancer with
estrogen receptor (ER) expression status. a. Spatial attention heatmaps highlighting histological regions most
relevant for molecular prediction in mutated samples. b. Quantification of cellular composition (neoplastic,
inflammatory, epithelial, connective, dead cells) in the top 1% high-attention patches across the cohort. c.
Shapley value attribution of the top-3 and bottom-3 transcriptomic pathways influencing model predictions in
each cohort.
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Extended Data Figure 3. Local and global interpretability analyses of PathLUPI for breast cancer with
human epidermal growth factor receptor 2 (HER2) expression status. a. Spatial attention heatmaps
highlighting histological regions most relevant for molecular prediction in mutated samples. b.
Quantification of cellular composition (neoplastic, inflammatory, epithelial, connective, dead cells) in the top
1% high-attention patches across the cohort. c. Shapley value attribution of the top-3 and bottom-3
transcriptomic pathways influencing model predictions in each cohort.
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Extended Data Figure 4. Local and global interpretability analyses of PathLUPI for breast cancer with
PIK3CA mutation status. a. Spatial attention heatmaps highlighting histological regions most relevant for
molecular prediction in mutated samples. b. Quantification of cellular composition (neoplastic, inflammatory,
epithelial, connective, dead cells) in the top 1% high-attention patches across the cohort. c. Shapley value
attribution of the top-3 and bottom-3 transcriptomic pathways influencing model predictions in each cohort.
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Extended Data Figure 5. Local and global interpretability analyses of PathLUPI for breast cancer with
progesterone receptor (PR) expression status. a. Spatial attention heatmaps highlighting histological regions
most relevant for molecular prediction in mutated samples. b. Quantification of cellular composition
(neoplastic, inflammatory, epithelial, connective, dead cells) in the top 1% high-attention patches across the
cohort. c. Shapley value attribution of the top-3 and bottom-3 transcriptomic pathways influencing model
predictions in each cohort.
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Extended Data Figure 6. Local and global interpretability analyses of PathLUPI for triple-negative breast
cancer (TNBC) status. a. Spatial attention heatmaps highlighting histological regions most relevant for
molecular prediction in mutated samples. b. Quantification of cellular composition (neoplastic, inflammatory,
epithelial, connective, dead cells) in the top 1% high-attention patches across the cohort. c. Shapley value
attribution of the top-3 and bottom-3 transcriptomic pathways influencing model predictions in each cohort.
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Extended Data Figure 7. Local and global interpretability analyses of PathLUPI breast cancer with TP53
mutation status. a. Spatial attention heatmaps highlighting histological regions most relevant for molecular
prediction in mutated samples. b. Quantification of cellular composition (neoplastic, inflammatory, epithelial,
connective, dead cells) in the top 1% high-attention patches across the cohort. c. Shapley value attribution of
the top-3 and bottom-3 transcriptomic pathways influencing model predictions in each cohort.
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Extended Data Figure 8. Local and global interpretability analyses of PathLUPI colorectal cancer with
KRAS mutation status. a. Spatial attention heatmaps highlighting histological regions most relevant for
molecular prediction in mutated samples. b. Quantification of cellular composition (neoplastic, inflammatory,
epithelial, connective, dead cells) in the top 1% high-attention patches across the cohort. c. Shapley value
attribution of the top-3 and bottom-3 transcriptomic pathways influencing model predictions in each cohort.
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Extended Data Figure 9. Local and global interpretability analyses of PathLUPI colorectal cancer with
TP53 mutation status. a. Spatial attention heatmaps highlighting histological regions most relevant for
molecular prediction in mutated samples. b. Quantification of cellular composition (neoplastic, inflammatory,
epithelial, connective, dead cells) in the top 1% high-attention patches across the cohort. c. Shapley value
attribution of the top-3 and bottom-3 transcriptomic pathways influencing model predictions in each cohort.
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Extended Data Figure 10. Local and global interpretability analyses of PathLUPI glioma cancer with
IDH1 mutation status. a. Spatial attention heatmaps highlighting histological regions most relevant for
molecular prediction in mutated samples. b. Quantification of cellular composition (neoplastic, inflammatory,
epithelial, connective, dead cells) in the top 1% high-attention patches across the cohort. c. Shapley value
attribution of the top-3 and bottom-3 transcriptomic pathways influencing model predictions in each cohort.
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Extended Data Figure 11. Local and global interpretability analyses of PathLUPI liver hepatocellular
carcinoma with TP53 mutation status. a. Spatial attention heatmaps highlighting histological regions most
relevant for molecular prediction in mutated samples. b. Quantification of cellular composition (neoplastic,
inflammatory, epithelial, connective, dead cells) in the top 1% high-attention patches across the cohort. c.
Shapley value attribution of the top-3 and bottom-3 transcriptomic pathways influencing model predictions in
each cohort.
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Extended Data Figure 12. Local and global interpretability analyses of PathLUPI lung adenocarcinoma
with KRAS mutation status. a. Spatial attention heatmaps highlighting histological regions most relevant for
molecular prediction in mutated samples. b. Quantification of cellular composition (neoplastic, inflammatory,
epithelial, connective, dead cells) in the top 1% high-attention patches across the cohort. c. Shapley value
attribution of the top-3 and bottom-3 transcriptomic pathways influencing model predictions in each cohort.
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Extended Data Figure 13. Local and global interpretability analyses of PathLUPI lung adenocarcinoma
with TP53 mutation status. a. Spatial attention heatmaps highlighting histological regions most relevant for
molecular prediction in mutated samples. b. Quantification of cellular composition (neoplastic, inflammatory,
epithelial, connective, dead cells) in the top 1% high-attention patches across the cohort. c. Shapley value
attribution of the top-3 and bottom-3 transcriptomic pathways influencing model predictions in each cohort.
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Extended Data Figure 14. Local and global interpretability analyses of PathLUPI non-small-cell lung
carcinoma with tumor mutational burden status. a. Spatial attention heatmaps highlighting histological
regions most relevant for molecular prediction in mutated samples. b. Quantification of cellular composition
(neoplastic, inflammatory, epithelial, connective, dead cells) in the top 1% high-attention patches across the
cohort. c. Shapley value attribution of the top-3 and bottom-3 transcriptomic pathways influencing model
predictions in each cohort.
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Extended Data Figure 15. Local and global interpretability analyses of PathLUPI skin cutaneous
melanoma with BRAF mutation status. a. Spatial attention heatmaps highlighting histological regions most
relevant for molecular prediction in mutated samples. b. Quantification of cellular composition (neoplastic,
inflammatory, epithelial, connective, dead cells) in the top 1% high-attention patches across the cohort. c.
Shapley value attribution of the top-3 and bottom-3 transcriptomic pathways influencing model predictions in
each cohort.
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Datasets Metrics ABMIL CLAM DTFD TransMIL PathLUPI

BRCA-PR
AUC 0.825 (0.824-0.827) 0.826 (0.824-0.827) 0.830 (0.829-0.831) 0.814 (0.813-0.816) 0.849 (0.848-0.850)
ACC 0.792 (0.791-0.794) 0.807 (0.806-0.808) 0.793 (0.792-0.795) 0.737 (0.735-0.739) 0.816 (0.815-0.817)
F1 0.735 (0.733-0.737) 0.766 (0.765-0.767) 0.732 (0.730-0.733) 0.702 (0.700-0.704) 0.778 (0.777-0.779)

BRCA-PR*
AUC 0.738 (0.737-0.739) 0.731 (0.730-0.731) 0.739 (0.738-0.740) 0.741 (0.741-0.741) 0.753 (0.752-0.754)
ACC 0.676 (0.676-0.676) 0.659 (0.658-0.659) 0.648 (0.646-0.650) 0.664 (0.664-0.665) 0.701 (0.700-0.702)
F1 0.629 (0.627-0.631) 0.624 (0.623-0.625) 0.635 (0.633-0.637) 0.613 (0.612-0.615) 0.640 (0.637-0.643)

BRCA-TP53
AUC 0.858 (0.857-0.859) 0.856 (0.855-0.857) 0.859 (0.858-0.860) 0.853 (0.852-0.854) 0.878 (0.877-0.879)
ACC 0.816 (0.815-0.817) 0.808 (0.807-0.809) 0.806 (0.805-0.808) 0.790 (0.789-0.791) 0.814 (0.814-0.815)
F1 0.788 (0.787-0.789) 0.769 (0.768-0.771) 0.759 (0.758-0.761) 0.741 (0.740-0.743) 0.774 (0.773-0.774)

BRCA-TP53*
AUC 0.785 (0.784-0.785) 0.745 (0.745-0.746) 0.767 (0.766-0.768) 0.782 (0.781-0.783) 0.774 (0.773-0.775)
ACC 0.705 (0.704-0.706) 0.618 (0.617-0.620) 0.655 (0.652-0.657) 0.689 (0.688-0.690) 0.723 (0.723-0.724)
F1 0.633 (0.632-0.634) 0.621 (0.621-0.622) 0.623 (0.622-0.625) 0.657 (0.657-0.657) 0.612 (0.610-0.615)

CRC-TP53
AUC 0.778 (0.776-0.780) 0.784 (0.782-0.786) 0.789 (0.786-0.791) 0.699 (0.696-0.702) 0.806 (0.803-0.808)
ACC 0.722 (0.720-0.724) 0.697 (0.695-0.698) 0.700 (0.699-0.702) 0.705 (0.703-0.707) 0.721 (0.718-0.724)
F1 0.666 (0.664-0.668) 0.632 (0.630-0.634) 0.609 (0.606-0.611) 0.621 (0.618-0.625) 0.684 (0.682-0.687)

LIHC-TP53
AUC 0.769 (0.767-0.771) 0.768 (0.766-0.770) 0.750 (0.748-0.753) 0.752 (0.749-0.754) 0.778 (0.776-0.780)
ACC 0.770 (0.768-0.771) 0.756 (0.754-0.757) 0.743 (0.741-0.744) 0.744 (0.742-0.745) 0.724 (0.722-0.726)
F1 0.688 (0.687-0.690) 0.676 (0.674-0.678) 0.666 (0.664-0.668) 0.627 (0.624-0.630) 0.604 (0.601-0.608)

LUAD-TP53
AUC 0.745 (0.743-0.747) 0.746 (0.744-0.748) 0.751 (0.749-0.752) 0.717 (0.715-0.718) 0.791 (0.789-0.792)
ACC 0.685 (0.684-0.687) 0.679 (0.677-0.680) 0.706 (0.704-0.707) 0.629 (0.627-0.631) 0.725 (0.723-0.726)
F1 0.680 (0.679-0.682) 0.673 (0.671-0.674) 0.701 (0.699-0.702) 0.604 (0.602-0.607) 0.716 (0.714-0.718)

NSCLC-TMB
AUC 0.694 (0.693-0.696) 0.699 (0.697-0.701) 0.690 (0.688-0.691) 0.700 (0.698-0.702) 0.735 (0.733-0.736)
ACC 0.756 (0.755-0.757) 0.752 (0.750-0.753) 0.754 (0.753-0.755) 0.684 (0.683-0.685) 0.761 (0.760-0.763)
F1 0.562 (0.560-0.565) 0.534 (0.531-0.536) 0.540 (0.538-0.542) 0.536 (0.533-0.539) 0.609 (0.608-0.611)

Extended Data Table 1. Performance of the investigational biomarker prediction task. Best-performing
model for each metric is in bold. * denotes external cohorts.
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Datasets Metrics ABMIL CLAM DTFD TransMIL PathLUPI

BLCA-FGFR3
AUC 0.845 (0.843-0.848) 0.845 (0.843-0.847) 0.841 (0.839-0.844) 0.796 (0.793-0.799) 0.861 (0.859-0.864)
ACC 0.857 (0.856-0.859) 0.882 (0.880-0.883) 0.855 (0.854-0.857) 0.850 (0.849-0.852) 0.899 (0.898-0.901)
F1 0.626 (0.623-0.629) 0.707 (0.703-0.710) 0.673 (0.670-0.675) 0.665 (0.663-0.668) 0.766 (0.764-0.769)

BRCA-ER
AUC 0.902 (0.901-0.903) 0.904 (0.902-0.905) 0.898 (0.897-0.899) 0.904 (0.902-0.905) 0.918 (0.917-0.919)
ACC 0.872 (0.871-0.873) 0.860 (0.859-0.861) 0.875 (0.875-0.876) 0.859 (0.858-0.860) 0.885 (0.884-0.886)
F1 0.801 (0.800-0.803) 0.761 (0.759-0.763) 0.811 (0.810-0.812) 0.777 (0.775-0.779) 0.824 (0.822-0.825)

BRCA-ER*
AUC 0.695 (0.695-0.696) 0.697 (0.696-0.697) 0.688 (0.687-0.688) 0.706 (0.705-0.706) 0.736 (0.735-0.736)
ACC 0.741 (0.741-0.741) 0.708 (0.706-0.709) 0.649 (0.647-0.651) 0.703 (0.703-0.704) 0.727 (0.725-0.730)
F1 0.567 (0.566-0.568) 0.520 (0.518-0.521) 0.559 (0.558-0.559) 0.596 (0.596-0.597) 0.578 (0.577-0.579)

BRCA-HER2
AUC 0.722 (0.720-0.724) 0.721 (0.719-0.723) 0.727 (0.725-0.730) 0.705 (0.703-0.707) 0.742 (0.740-0.744)
ACC 0.776 (0.775-0.777) 0.762 (0.760-0.764) 0.783 (0.782-0.784) 0.772 (0.771-0.774) 0.785 (0.784-0.786)
F1 0.544 (0.542-0.547) 0.555 (0.554-0.557) 0.543 (0.540-0.546) 0.558 (0.556-0.560) 0.607 (0.605-0.609)

BRCA-HER2*
AUC 0.665 (0.664-0.665) 0.662 (0.661-0.664) 0.664 (0.663-0.664) 0.583 (0.580-0.586) 0.678 (0.676-0.680)
ACC 0.630 (0.629-0.631) 0.633 (0.631-0.635) 0.604 (0.595-0.608) 0.588 (0.582-0.594) 0.621 (0.619-0.622)
F1 0.559 (0.556-0.562) 0.564 (0.561-0.567) 0.560 (0.559-0.560) 0.486 (0.483-0.489) 0.601 (0.599-0.602)

BRCA-TNBC
AUC 0.912 (0.910-0.913) 0.903 (0.901-0.904) 0.910 (0.909-0.911) 0.907 (0.906-0.908) 0.924 (0.923-0.925)
ACC 0.889 (0.888-0.890) 0.881 (0.880-0.882) 0.883 (0.883-0.884) 0.888 (0.887-0.889) 0.895 (0.895-0.896)
F1 0.788 (0.787-0.790) 0.758 (0.757-0.759) 0.759 (0.757-0.761) 0.765 (0.762-0.768) 0.802 (0.801-0.804)

BRCA-TNBC*
AUC 0.759 (0.758-0.759) 0.767 (0.766-0.767) 0.752 (0.752-0.752) 0.729 (0.729-0.730) 0.792 (0.791-0.792)
ACC 0.886 (0.885-0.887) 0.893 (0.893-0.894) 0.850 (0.848-0.851) 0.887 (0.887-0.887) 0.903 (0.901-0.905)
F1 0.583 (0.582-0.584) 0.573 (0.572-0.574) 0.575 (0.574-0.575) 0.582 (0.582-0.583) 0.595 (0.594-0.596)

BRCA-PIK3CA
AUC 0.694 (0.693-0.696) 0.695 (0.694-0.696) 0.686 (0.685-0.688) 0.696 (0.695-0.697) 0.726 (0.725-0.727)
ACC 0.663 (0.662-0.664) 0.664 (0.663-0.665) 0.669 (0.667-0.670) 0.689 (0.688-0.690) 0.685 (0.684-0.686)
F1 0.563 (0.561-0.566) 0.549 (0.547-0.552) 0.596 (0.595-0.598) 0.640 (0.638-0.641) 0.622 (0.620-0.624)

BRCA-PIK3CA*
AUC 0.620 (0.620-0.621) 0.632 (0.631-0.632) 0.585 (0.583-0.586) 0.625 (0.624-0.626) 0.631 (0.628-0.633)
ACC 0.463 (0.462-0.463) 0.430 (0.428-0.433) 0.548 (0.545-0.550) 0.444 (0.442-0.447) 0.535 (0.532-0.539)
F1 0.510 (0.509-0.511) 0.430 (0.428-0.433) 0.366 (0.362-0.369) 0.518 (0.518-0.519) 0.519 (0.517-0.520)

CRC-BRAF
AUC 0.737 (0.734-0.740) 0.727 (0.724-0.730) 0.762 (0.759-0.765) 0.690 (0.686-0.694) 0.840 (0.837-0.843)
ACC 0.843 (0.842-0.845) 0.847 (0.846-0.849) 0.869 (0.867-0.871) 0.852 (0.850-0.853) 0.856 (0.854-0.858)
F1 0.525 (0.522-0.527) 0.549 (0.545-0.552) 0.552 (0.549-0.556) 0.560 (0.557-0.564) 0.591 (0.587-0.595)

CRC-BRAF*
AUC 0.610 (0.609-0.611) 0.626 (0.626-0.627) 0.564 (0.562-0.566) 0.590 (0.590-0.591) 0.655 (0.653-0.657)
ACC 0.643 (0.639-0.647) 0.635 (0.630-0.641) 0.737 (0.735-0.738) 0.663 (0.659-0.666) 0.755 (0.752-0.758)
F1 0.347 (0.346-0.348) 0.357 (0.355-0.359) 0.238 (0.236-0.241) 0.359 (0.358-0.360) 0.442 (0.440-0.445)

CRC-KRAS
AUC 0.617 (0.614-0.620) 0.641 (0.638-0.643) 0.630 (0.627-0.633) 0.601 (0.599-0.604) 0.705 (0.703-0.708)
ACC 0.578 (0.576-0.581) 0.577 (0.575-0.580) 0.623 (0.621-0.625) 0.519 (0.516-0.523) 0.583 (0.580-0.587)
F1 0.527 (0.523-0.530) 0.561 (0.559-0.564) 0.553 (0.549-0.556) 0.463 (0.459-0.467) 0.565 (0.561-0.569)

GBMLGG-IDH1
AUC 0.984 (0.983-0.984) 0.982 (0.982-0.983) 0.981 (0.980-0.981) 0.986 (0.985-0.986) 0.992 (0.992-0.992)
ACC 0.928 (0.927-0.929) 0.933 (0.932-0.934) 0.939 (0.938-0.940) 0.921 (0.920-0.922) 0.923 (0.921-0.924)
F1 0.926 (0.925-0.927) 0.932 (0.930-0.933) 0.937 (0.936-0.939) 0.918 (0.917-0.919) 0.921 (0.919-0.923)

GBMLGG-IDH1*
AUC 0.912 (0.912-0.912) 0.915 (0.914-0.915) 0.914 (0.913-0.914) 0.914 (0.914-0.914) 0.920 (0.919-0.920)
ACC 0.852 (0.851-0.852) 0.836 (0.836-0.837) 0.842 (0.841-0.842) 0.824 (0.823-0.824) 0.850 (0.849-0.850)
F1 0.817 (0.816-0.817) 0.797 (0.796-0.798) 0.793 (0.792-0.794) 0.792 (0.792-0.792) 0.804 (0.804-0.805)

LUAD-KRAS
AUC 0.598 (0.596-0.600) 0.577 (0.574-0.579) 0.619 (0.617-0.621) 0.635 (0.632-0.637) 0.671 (0.669-0.673)
ACC 0.698 (0.696-0.700) 0.704 (0.702-0.705) 0.681 (0.680-0.683) 0.628 (0.626-0.630) 0.672 (0.670-0.674)
F1 0.471 (0.469-0.473) 0.491 (0.489-0.493) 0.513 (0.510-0.515) 0.510 (0.508-0.512) 0.509 (0.507-0.512)

LUAD-EGFR
AUC 0.700 (0.697-0.703) 0.702 (0.698-0.705) 0.733 (0.730-0.736) 0.707 (0.704-0.710) 0.769 (0.766-0.772)
ACC 0.872 (0.871-0.874) 0.874 (0.873-0.875) 0.864 (0.862-0.865) 0.872 (0.871-0.873) 0.872 (0.870-0.873)
F1 0.466 (0.465-0.466) 0.466 (0.466-0.466) 0.517 (0.515-0.520) 0.495 (0.493-0.497) 0.492 (0.491-0.494)

SKCM-BRAF
AUC 0.603 (0.601-0.605) 0.604 (0.602-0.606) 0.583 (0.581-0.586) 0.631 (0.629-0.633) 0.684 (0.682-0.686)
ACC 0.602 (0.600-0.604) 0.592 (0.590-0.593) 0.598 (0.596-0.600) 0.574 (0.571-0.577) 0.625 (0.623-0.627)
F1 0.565 (0.563-0.567) 0.575 (0.573-0.577) 0.576 (0.573-0.578) 0.557 (0.554-0.561) 0.614 (0.613-0.616)

Extended Data Table 2. Performance of actionable biomarker prediction. Best-performing model for
each metric is in bold. * denotes external cohorts.
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Datasets Metrics ABMIL CLAM DTFD TransMIL PathLUPI

BLCA
AUC 0.887 (0.886-0.888) 0.887 (0.886-0.888) 0.884 (0.884-0.885) 0.881 (0.880-0.883) 0.900 (0.899-0.901)
ACC 0.697 (0.695-0.699) 0.694 (0.692-0.696) 0.707 (0.705-0.709) 0.722 (0.720-0.724) 0.717 (0.715-0.719)
F1 0.601 (0.599-0.603) 0.568 (0.566-0.571) 0.600 (0.598-0.603) 0.624 (0.621-0.626) 0.615 (0.613-0.618)

BRCA
AUC 0.867 (0.866-0.868) 0.867 (0.866-0.868) 0.858 (0.858-0.859) 0.852 (0.851-0.853) 0.876 (0.876-0.877)
ACC 0.689 (0.688-0.690) 0.689 (0.688-0.690) 0.664 (0.663-0.665) 0.642 (0.641-0.643) 0.676 (0.675-0.677)
F1 0.633 (0.631-0.635) 0.614 (0.612-0.616) 0.602 (0.600-0.603) 0.516 (0.515-0.518) 0.606 (0.605-0.608)

BRCA*
AUC 0.701 (0.701-0.702) 0.706 (0.705-0.706) 0.666 (0.666-0.667) 0.710 (0.710-0.710) 0.727 (0.726-0.727)
ACC 0.425 (0.424-0.426) 0.425 (0.425-0.426) 0.354 (0.353-0.355) 0.485 (0.485-0.486) 0.491 (0.490-0.493)
F1 0.355 (0.354-0.356) 0.357 (0.356-0.357) 0.260 (0.259-0.261) 0.416 (0.416-0.417) 0.450 (0.449-0.452)

CRC
AUC 0.822 (0.821-0.823) 0.818 (0.817-0.819) 0.810 (0.809-0.811) 0.793 (0.791-0.794) 0.831 (0.830-0.832)
ACC 0.591 (0.589-0.593) 0.628 (0.627-0.630) 0.605 (0.603-0.607) 0.567 (0.565-0.569) 0.614 (0.612-0.616)
F1 0.531 (0.528-0.533) 0.568 (0.566-0.570) 0.547 (0.545-0.550) 0.502 (0.500-0.504) 0.556 (0.554-0.557)

GBMLGG
AUC 0.867 (0.866-0.868) 0.865 (0.864-0.866) 0.861 (0.860-0.862) 0.870 (0.869-0.871) 0.886 (0.885-0.887)
ACC 0.684 (0.682-0.685) 0.691 (0.689-0.693) 0.674 (0.673-0.676) 0.685 (0.683-0.686) 0.684 (0.683-0.686)
F1 0.510 (0.508-0.512) 0.523 (0.521-0.526) 0.506 (0.504-0.508) 0.511 (0.509-0.513) 0.525 (0.523-0.527)

HNSC
AUC 0.775 (0.773-0.776) 0.779 (0.778-0.781) 0.757 (0.755-0.759) 0.760 (0.758-0.762) 0.803 (0.802-0.804)
ACC 0.475 (0.472-0.479) 0.498 (0.494-0.501) 0.429 (0.427-0.432) 0.542 (0.539-0.544) 0.565 (0.563-0.568)
F1 0.436 (0.433-0.439) 0.446 (0.444-0.449) 0.403 (0.401-0.406) 0.486 (0.484-0.489) 0.519 (0.516-0.521)

PanGI
AUC 0.861 (0.860-0.862) 0.863 (0.862-0.863) 0.853 (0.852-0.854) 0.832 (0.831-0.833) 0.873 (0.873-0.874)
ACC 0.739 (0.738-0.741) 0.490 (0.489-0.491) 0.422 (0.420-0.424) 0.534 (0.533-0.535) 0.753 (0.752-0.754)
F1 0.541 (0.539-0.543) 0.540 (0.538-0.543) 0.519 (0.516-0.522) 0.456 (0.453-0.458) 0.547 (0.545-0.549)

UCEC
AUC 0.808 (0.807-0.809) 0.811 (0.810-0.812) 0.799 (0.798-0.800) 0.787 (0.786-0.788) 0.822 (0.821-0.823)
ACC 0.579 (0.577-0.582) 0.584 (0.582-0.586) 0.576 (0.575-0.578) 0.580 (0.578-0.582) 0.595 (0.594-0.597)
F1 0.494 (0.491-0.496) 0.502 (0.500-0.503) 0.511 (0.509-0.512) 0.502 (0.500-0.503) 0.533 (0.531-0.535)

Extended Data Table 3. Performance of molecular subtyping. Best-performing model for each metric is
in bold. * denotes external cohorts.

Datasets Metrics ABMIL CLAM DTFD TransMIL PathLUPI

BLCA C-index 0.633 (0.631-0.635) 0.631 (0.629-0.633) 0.622 (0.620-0.624) 0.640 (0.638-0.641) 0.651 (0.649-0.653)
BRCA C-index 0.668 (0.666-0.670) 0.668 (0.666-0.670) 0.657 (0.655-0.659) 0.677 (0.674-0.679) 0.710 (0.708-0.712)
BRCA* C-index 0.625 (0.624-0.625) 0.622 (0.621-0.622) 0.587 (0.586-0.589) 0.614 (0.614-0.615) 0.641 (0.640-0.641)
CRC C-index 0.683 (0.681-0.685) 0.685 (0.683-0.687) 0.637 (0.635-0.639) 0.664 (0.662-0.666) 0.692 (0.690-0.694)
GBM C-index 0.512 (0.507-0.515) 0.575 (0.572-0.580) 0.544 (0.540-0.546) 0.537 (0.534-0.541) 0.662 (0.658-0.665)
LGG C-index 0.755 (0.752-0.757) 0.753 (0.750-0.756) 0.751 (0.749-0.754) 0.766 (0.763-0.768) 0.786 (0.784-0.788)
HNSC C-index 0.607 (0.606-0.609) 0.608 (0.607-0.610) 0.609 (0.607-0.610) 0.626 (0.625-0.628) 0.631 (0.629-0.632)
KIRC C-index 0.732 (0.730-0.733) 0.732 (0.731-0.734) 0.733 (0.731-0.735) 0.728 (0.726-0.729) 0.747 (0.746-0.749)
LIHC C-index 0.695 (0.693-0.698) 0.699 (0.696-0.702) 0.689 (0.686-0.692) 0.716 (0.713-0.718) 0.776 (0.773-0.778)
LUAD C-index 0.619 (0.617-0.621) 0.621 (0.619-0.623) 0.612 (0.610-0.615) 0.643 (0.641-0.645) 0.668 (0.667-0.670)
LUSC C-index 0.553 (0.551-0.555) 0.548 (0.546-0.549) 0.575 (0.573-0.577) 0.590 (0.588-0.592) 0.618 (0.616-0.620)
LUSC* C-index 0.605 (0.604-0.607) 0.624 (0.623-0.625) 0.631 (0.630-0.632) 0.621 (0.620-0.621) 0.649 (0.647-0.650)
SKCM C-index 0.623 (0.621-0.625) 0.618 (0.617-0.620) 0.641 (0.639-0.642) 0.627 (0.626-0.629) 0.651 (0.649-0.653)
STAD C-index 0.629 (0.626-0.631) 0.640 (0.638-0.642) 0.648 (0.646-0.650) 0.634 (0.632-0.637) 0.665 (0.663-0.667)
UCEC C-index 0.742 (0.740-0.744) 0.731 (0.728-0.733) 0.742 (0.740-0.744) 0.720 (0.718-0.722) 0.756 (0.754-0.758)
UCEC* C-index 0.583 (0.582-0.583) 0.594 (0.593-0.595) 0.618 (0.617-0.619) 0.553 (0.551-0.555) 0.630 (0.629-0.632)

Extended Data Table 4. Performance of survival prognosis. Best-performing model for each metric is in
bold. * denotes external cohorts.
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Task Type Task ID
(Patient Count) Label Type Label Name Label Source

Actionable
Biomarker
Prediction

BLCA-FGFR3 (314) Somatic Mutation FGFR3 mut vs. wt TCGA (UCSC Xena)
BRCA-ER (949) Protein Expression ER+ vs. ER− TCGA (UCSC Xena)

BRCA-ER* (1,527) Protein Expression ER+ vs. ER− Center-1
BRCA-HER2 (646) Protein Expression HER2+ vs. HER2− TCGA (UCSC Xena)

BRCA-HER2* (1,391) Protein Expression HER2+ vs. HER2− Center-1
BRCA-PIK3CA (634) Somatic Mutation PIK3CA mut vs. wt TCGA (UCSC Xena)

BRCA-PIK3CA* (116) Somatic Mutation PIK3CA mut vs. wt. CPTAC (cBioPortal)
BRCA-TNBC (976) Cancer Subtype TNBC+ vs. TNBC- TCGA (UCSC Xena)

BRCA-TNBC* (1,391) Cancer Subtype TNBC+ vs. TNBC- Center-1
CRC-KRAS (333) Somatic Mutation KRAS mut. vs. wt. TCGA (UCSC Xena)
CRC-BRAF (333) Somatic Mutation BRAF mut. vs. wt. TCGA (UCSC Xena)

CRC-BRAF* (102) Somatic Mutation BRAF mut. vs. wt. CPTAC (cBioPortal)
GBMLGG-IDH1 (373) Somatic Mutation IDH1 mut. vs. wt. TCGA (UCSC Xena)
GBMLGG-IDH1* (852) Somatic Mutation IDH1 mut. vs. wt. EBRAINS

LUAD-EGFR (448) Somatic Mutation EGFR mut. vs. wt. TCGA (UCSC Xena)
LUAD-KRAS (448) Somatic Mutation KRAS mut. vs. wt. TCGA (UCSC Xena)
SKCM-BRAF (412) Somatic Mutation BRAF mut. vs. wt. TCGA (UCSC Xena)

Investigational
Biomarker
Prediction

BRCA-PR (948) Protein Expression PR+ vs. PR− TCGA (UCSC Xena)
BRCA-PR* (1,527) Protein Expression PR+ vs. PR− Center-1
BRCA-TP53 (634) Somatic Mutation TP53 mut. vs. wt. TCGA (UCSC Xena)

BRCA-TP53* (116) Somatic Mutation TP53 mut. vs. wt. CPTAC (cBioPortal)
CRC-TP53 (333) Somatic Mutation TP53 mut. vs. wt. TCGA (UCSC Xena)
LIHC-TP53 (316) Somatic Mutation TP53 mut. vs. wt. TCGA (UCSC Xena)
LUAD-TP53 (439) Somatic Mutation TP53 mut. vs. wt. TCGA (UCSC Xena)
NSCLC-TMB (902) Tumor Mutation Burden High vs. Low TCGA (UCSC Xena)

Molecular
Subtyping

BLCA-Mol (298) Molecular Subtype Luminal, Luminal infiltrated, Luminal
papillary, Basal squamous

TCGA (TCGAbiolinks)

BRCA-Mol (505) Molecular Subtype Luminal A, Luminal B, HER2-enriched, TCGA (TCGAbiolinks)Basal-like

BRCA-Mol* (2,045) Molecular Subtype Luminal A, Luminal B, HER2-enriched, Center-2Basal-like
CRC-Mol (492) Molecular Subtype CMS1, CMS2, CMS3, CMS4 TCGA (TCGAbiolinks)

GBMLGG-Mol (552) Molecular Subtype G-CIMP-high, G-CIMP-low, Codel, TCGA (TCGAbiolinks)Mesenchymal-like, Classic-like
HNSC-Mol (218) Molecular Subtype Atypical, Basal, Classical,

Mesenchymal
TCGA (TCGAbiolinks)

PanGI-Mol (786) Molecular Subtype MSI, CIN, EBV, HM-SNV, GS TCGA (TCGAbiolinks)
UCEC-Mol (458) Molecular Subtype CN-high, CN-low, MSI, POLE TCGA (TCGAbiolinks)

Survival
Prognosis

BLCA-Surv (376) Overall Survival OS time, Event status TCGA (cBioPortal)
BRCA-Surv (1,023) Overall Survival OS time, Event status TCGA (cBioPortal)
BRCA-Surv* (454) Overall Survival OS time, Event status Center-2

CRC-Surv (579) Overall Survival OS time, Event status TCGA (cBioPortal)
GBM-Surv (372) Overall Survival OS time, Event status TCGA (cBioPortal)
HNSC-Surv (441) Overall Survival OS time, Event status TCGA (cBioPortal)
KIRC-Surv (498) Overall Survival OS time, Event status TCGA (cBioPortal)
LGG-Surv (462) Overall Survival OS time, Event status TCGA (cBioPortal)
LIHC-Surv (347) Overall Survival OS time, Event status TCGA (cBioPortal)
LUAD-Surv (455) Overall Survival OS time, Event status TCGA (cBioPortal)
LUSC-Surv (452) Overall Survival OS time, Event status TCGA (cBioPortal)
LUSC-Surv* (94) Overall Survival OS time, Event status CPTAC (cBioPortal)
SKCM-Surv (415) Overall Survival OS time, Event status TCGA (cBioPortal)
STAD-Surv (363) Overall Survival OS time, Event status TCGA (cBioPortal)
UCEC-Surv (495) Overall Survival OS time, Event status TCGA (cBioPortal)
UCEC-Surv* (94) Overall Survival OS time, Event status CPTAC (cBioPortal)

Extended Data Table 5. Curated molecular oncology tasks grouped by task type, including survival
prognosis, molecular subtyping, and biomarker prediction across multiple cancer types and data sources.
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Dataset Link

TCGA85 https://portal.gdc.cancer.gov/
CPTAC35 https://proteomic.datacommons.cancer.gov/pdc/
EBRAINS36 https://www.ebrains.eu/

Extended Data Table 6. Public datasets used in this study. Some datasets may require permission before
downloading.

Biomarker Targeted Therapy Indication Evidence

BLCA-FGFR3 Erdafitinib Bladder cancer https://www.cancer.gov/about-cancer/
treatment/drugs/erdafitinib

BRCA-ER Tamoxifen Breast cancer https://www.cancer.gov/about-cancer/
treatment/drugs/tamoxifen

BRCA-HER2 Trastuzumab (Herceptin) Breast cancer https://www.cancer.gov/about-cancer/
treatment/drugs/trastuzumab

BRCA-PIK3CA Alpelisib Breast cancer https://www.cancer.gov/about-cancer/
treatment/drugs/alpelisib

CRC-BRAF Encorafenib Colorectal cancer https://www.cancer.gov/about-cancer/
treatment/drugs/encorafenib

CRC-KRAS Sotorasib Colorectal cancer https://www.cancer.gov/about-cancer/
treatment/drugs/sotorasib

GBMLGG-IDH1 Ivosidenib Glioma https://www.cancer.gov/about-cancer/
treatment/drugs/ivosidenib

LUAD-EGFR Osimertinib Lung adenocarcinoma https://www.cancer.gov/about-cancer/
treatment/drugs/osimertinib

LUAD-KRAS Sotorasib, Adagrasib Lung adenocarcinoma https://www.cancer.gov/about-cancer/
treatment/drugs/sotorasib,
https://www.cancer.gov/about-cancer/
treatment/drugs/adagrasib

SKCM-BRAF Vemurafenib Melanoma https://www.cancer.gov/about-cancer/
treatment/drugs/vemurafenib

Extended Data Table 7. Summary of clinically approved targeted therapies corresponding to actionable
cancer biomarkers.
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Hyperparam. ABMIL CLAM DTFD TransMIL PathLUPI
(WSI)

PathLUPI
(RNASeq)

Input dim 512 512 512 512 512 50×D
Hidden dim 512 512 512 512 256 50 × 256
Dropout 0.25 0.25 0.25 0.25 0.25 0.25
Feature dim after fusion - - - - 256×2 → 256

Training Settings

Batch size 1
Epochs 30
Optimizer Adam
Learning rate 2e-4
Scheduler Cosine
Weight decay 1e-5

Extended Data Table 8. Hyperparameters for all compared models. D denotes the input dimension of
each pathway-grouped transcriptomic sequence.

35/35


	References

