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Abstract

Remarkable strides in computational pathology (CPath) have been made in the task-agnostic founda-
tion model (FM) that advances the performance of a wide array of downstream clinical tasks. Despite
the promising performance, there are still several challenges. First, prior works have resorted to either
vision-only or vision-captions data, disregarding invaluable pathology reports and gene expression



profiles which respectively offer distinct knowledge for versatile clinical applications. Second, the cur-
rent progress in pathology FMs predominantly concentrates on the patch level, where the restricted
context of patch-level pretraining fails to capture whole-slide patterns. Here we curated the largest
multimodal dataset consisting of H&E diagnostic whole slide images (WSIs) along with their associ-
ated pathology reports and RNA-Seq data, which resulted in 26,169 slide-level modality pairs from
10,275 patients across 32 cancer types. To leverage these data for CPath, we propose a novel whole-
slide pretraining paradigm which injects multimodal knowledge at the whole-slide context into the
pathology FM, called Multimodal Self-TAught PRetraining (mSTAR). The proposed paradigm rev-
olutionizes the workflow of pretraining for CPath, which enables the pathology FM to acquire the
whole-slide context. To the best of our knowledge, this is the first attempt to incorporate multimodal
knowledge at the slide level for enhancing pathology FMs, expanding the modelling context from uni-
modal to multimodal knowledge and from patch-level to slide-level. To systematically evaluate the
capabilities of mSTAR, extensive experiments including slide-level unimodal and multimodal applica-
tions, are conducted across 7 diverse types of tasks on 43 subtasks, resulting in the largest spectrum
of downstream tasks. The average performance in varying types of slide-level applications consistently
demonstrates significant performance enhancements for mSTAR compared to other state-of-the-art
FMs, with statistically critical differences observed. In particular, mSTAR showcases the promising
superiority in multimodal capabilities attained through the integration of multimodal knowledge.

Keywords: foundation models, computational pathology, multimodal, pretraining

1 Introduction

The recent advancements in foundation models
(FMs) [2, 3, 4, 5] for computational pathology
(CPath) have demonstrated considerable progress
in an incredibly broad spectrum of clinical tasks,
such as cancer diagnosis, treatment and progno-
sis. Despite encouraging performance in general-
purpose pathology foundation models, there are
still several unresolved challenges.

First, massive multimodal data in line with
clinical practices are under-utilized for pretrain-
ing, such as pathology reports and gene expression
profiles. Existing pathology FMs either focus on
vision-only [3] or vision-captions data [2, 4], in
which captions are too short to offer sufficiently
rich information although attempting to incor-
porate different modalities. The power of mul-
timodal data has been repeatedly substantiated
not only in the general machine learning com-
munity [6, 7] but also in the field of medical
cancer research [8, 9, 10]. In the clinical workflow,
as shown in Figure la, pathology reports often
provide the complete and exhaustive information
of whole slides, while patients’ gene expression
profiles offer insights of quantitative molecular
dynamics that can complement the qualitative
morphological view provided by a slide. The inte-
gration of these slide-level multimodal data can
establish a broad and holistic perspective, thereby

undoubtedly enhancing the capabilities of pathol-
ogy FMs to perform various clinical tasks.

Second, existing efforts in pathology FMs
are primarily directed towards the modelling of
patch/ROI-level data [2, 3, 4], leading to limited
contexts for slide-level clinical applications. Con-
ventional models typically treat individual patch
images as independent samples for pretraining a
patch extractor, and subsequently employ multi-
ple instance learning (MIL) [11, 12, 13] to perform
slide-level modelling based on embedded patch
features. Recent concurrent work has attempted
to pretrain a slide-level FM [5]. However, it is
achieved by pretraining a slide aggregator on top
of pre-extracted patch features with a fixed patch
extractor. This way poses an inherent limitation
that the upper bound of pretraining performance
is inevitably constrained by the quality of patch
features, thus limiting their generalization abili-
ties.

In this study, we curated the largest multi-
modal dataset including three modalities: H&E
diagnostic WSIs, pathology reports and RNA-Seq
data, resulting in 26,169 slide-level modality pairs
(22k used for pretraining) from 10,275 patients
across 32 cancer types sourced from The Cancer
Genome Atlas (TCGA) (Figure 1c-¢). To lever-
age these multimodal data for CPath, we devel-
oped a novel whole-slide pretraining paradigm
which injects multimodal knowledge into the
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Fig. 1: Overview of the study. a, The workflow in clinical practice for diagnosis, treatment and
prognosis of oncology, which primarily involves three common modalities data: WSIs, pathology reports
and gene expression profiles. b, The overview of mSTAR paradigm. mSTAR consists of two stages:
1) Slide-level Contrastive Learning, 2) Patch-level Self-Taught Training. c-e, statistics of data used in this
study, including ¢) Venn Graph of cases across various modalities, d) the number of cases for different
cancer types and e) the distribution of word count for pathology reports. f, The average performance
across 7 distinct types of applications, including unimodal (blue boxes) and multimodal tasks (green
boxes). g, Critical Difference (CD) Diagram [1] of the average rank performance across 43 diverse tasks
for mSTAR and the competing pathology foundation models, in which Bonferroni-Dunn test is employed
to assess whether there is a critical difference across different models on multiple datasets. In the CD
diagram, a significant difference (P < 0.001) is indicated by the non-overlapping vertical lines of CD

connecting different models.

pathology FM, termed Multimodal Self-TAught
PRetraining (mSTAR) (Figure 1b and 2), broad-
ening the context of modelling into the slide
level. To tackle the aforementioned challenges, this
paradigm first pretrains a slide aggregator that
absorbs multimodal knowledge via slide-level con-
trastive learning. This slide aggregator will act as
a bridge that injects whole-slide contextual multi-
modal knowledge into the patch extractor at the
next stage. Specifically, the slide aggregator gath-
ers all pre-extracted patch features of an entire
slide and integrates them into a slide-level rep-
resentation, which then contrastively aligns with
other modalities at the slide level. At the sec-
ond stage, the pretrained aggregator seamlessly
propagates multimodal knowledge learned at the
slide-level in the first stage to the patch extractor
through self-taught training. During self-taught
training, the pretrained aggregator serves as the
“Teacher” to supervise the pretraining of the
patch extractor, which enforces patch features
embedded by the patch extractor to closely resem-
ble the ones re-embedded by the pretrained aggre-
gator.

The proposed paradigm revolutionizes the
workflow of pretraining for computational pathol-
ogy, which allows the pathology FM to pos-
sess powerful whole-slide abilities. Furthermore,
to the best of our knowledge, this is the first
endeavor to inject multimodal knowledge at the
slide-level context into pathology foundation mod-
els, broadening the scope of contextual mod-
elling from unimodal to multimodal knowledge
and from patch-level to slide-level. To system-
atically investigate the capabilities of mSTAR
including unimodal and multimodal applications,
we evaluate 7 types of applications on 43 diverse

subtasks, resulting in the largest spectrum of
downstream tasks. The experimental results have
demonstrated that, mSTAR showcased consis-
tent superiority in not only unimodal but also
multimodal applications on average, with statis-
tically significant differences compared to previ-
ous state-of-the-art (SOTA) FMs (Figure 1f-g).
These findings indicate the noteworthy power of
multimodal knowledge at the whole-slide con-
text, which endows pathology foundation models
with enhanced capabilities that extend beyond the
patch-level unimodal context, enabling them to
achieve more generalized performance.

2 Results

2.1 The Overview of mSTAR

The proposed mSTAR aims to provide a novel
whole-slide pretraining paradigm that injects mul-
timodal knowledge into the pathology foundation
model. Compared with existing pathology foun-
dation models, mSTAR has the following inno-
vative designs to fully unleash its power in a
wide spectrum of pathological downstream tasks.
First, clinical multimodal data are fully harnessed
in pretraining to endow the pathology FM with
multimodal knowledge for comprehensive perspec-
tives in clinical tasks. Second, the whole-slide
pretraining paradigm provides an alternative way
to obtain whole-slide contexts for pathology FMs
through self-taught training. To the best of our
knowledge, this is the first work to inject multi-
modal knowledge at the whole-slide context into a
pathology FM, broadening the contextual under-
standing for CPath from patch-level to slide-level
and from unimodal to multimodal knowledge.
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Fig. 2: The Overview of mSTAR Pipeline. mSTAR is a whole-slide pretraining paradigm comprising
two-stage pretraining. a, Stage 1 aims to inject multimodal knowledge into a slide aggregator by slide-
level contrastive learning among WSIs, pathology reports and gene expression data. b, Stage 2 aims to
seamlessly propagate multimodal knowledge learned at the slide level into the patch extractor by Self-
Taught training, which leverages the slide aggregator pretrained in Stage 1 as “Teacher” and enforces

patch extractor to be “Student”.

The overview of mSTAR is shown in Figure 2,
consisting of two stages of pretraining.

In the first stage, the objective is to inject
multimodal knowledge into the slide aggregator
by slide-level contrastive learning among three
modalities, i.e., WSIs, pathology reports and
RNA-Seq profiles. Note that the pretrained slide
aggregator will act as a bridge that propagates

multimodal knowledge into the patch extractor
in the next stage. To this end, as shown in
Figure 2a, we first utilized a pretrained patch
extractor, a state-of-the-art pathology foundation
model named UNT [3], to encode each patch image
of a slide into patch features. Then the result-
ing patch features are fed into a slide aggregator
and integrated into a slide-level representation



which is subsequently aligned with other modal-
ities through inter-modality contrastive learning.
Furthermore, to mitigate the influence of het-
erogeneity across different types of cancers, the
pretraining of the slide aggregator is also super-
vised by inter-cancer contrastive learning. This
approach brings samples of the same cancer type
closer together while concurrently pushing sam-
ples of different cancer types apart.

In the second stage, the pretrained slide aggre-
gator acquiring multimodal knowledge, can serve
as the teacher model to seamlessly propagate mul-
timodal knowledge at the slide-level context into
the patch extractor, called Self-Taught Training
(Figure 2b). Specifically, the patch extractor
is pretrained through encouraging the extracted
patch features to be as similar as possible to
those re-embedded by the pretrained aggregator.
At the same time, to avoid catastrophic for-
getting, we also enforce a similarity constraint
between the extracted features and ones embed-
ded by the exponential moving average (EMA)
patch extractor.

With these two stages, multimodal knowl-
edge at the whole-slide context can be seamlessly
embedded into foundation models. As a result,
the model acquires the ability to comprehend
both patches and the entire WSI, which facili-
tates downstream tasks at different levels. In the
end, the pathology foundation model can achieve
advanced abilities with the extended context from
patch-level to slide-level and from unimodal to
multimodal knowledge. More details of mSTAR
can be found in the Section 4.2.

2.2 Pathological Slide Classification
for Diagnosis and Treatment

Slide classification holds significant relevance in
clinical settings, particularly in accurate cancer
diagnosis and treatment. For example, it aids
in categorizing the specific subtype of cancer,
which in turn guides the healthcare profession-
als in precise diagnosis and treatment planning.
Additionally, pathologists can identify molecular
markers within tissue slides, allowing them to
determine the molecular subtypes of cancer. This
information is of utmost importance as it forms
the foundation for developing personalized treat-
ment plans and enhancing treatment effectiveness.
Therefore, the evaluation of slide-level diagnostic

tasks, such as cancer subtyping, grading, etc., is
the first step of this study, followed by molecular
prediction based on the analysis of tissue slides.
From the perspective of technique, here we are
investigating unimodal abilities through patholog-
ical slide classification. To this end, 12 diverse
slide classification datasets were used for assess-
ing the ability of decision-making diagnosis at the
slide level, consisting of 6 diagnostic subtasks and
6 molecular prediction subtasks. For diagnostic
tasks, the following subtasks were included: breast
metastasis detection on CAMELYON [14, 15],
prostate ISUP grading on PANDA [16], ovar-
ian cancer subtyping on UBC-OCEAN [17, 18],
BRCA subtyping on TCGA BRCA [19], NSCLC
subtyping on TCGA NSCLC [19] and RCC sub-
typing on RCC-DHMC [20]. For molecular pre-
diction, we performed the prediction of molecu-
lar subtypes ER, HER2 and PR on BCNB [21]
datasets, respectively. This task also includes
molecular subtypes prediction on TCGA-BRCA,
TCGA-CRC and TCGA-GBMLGG datasets [19].
The details of every task are illustrated in the
Section 4.3.

The evaluations are two-fold: 1) we exam-
ined patch features of different pathology foun-
dation models in slide classification (Figure 3a-
d), including ResNet50 (R50) [22], PLIP [2],
CONCH [4], UNI [3] and our mSTAR. To
obtain slide/patient-level classification decision,
we adopted two commonly used MIL backbones
as the slide aggregator trained from scratch,
attention-based MIL (ABMIL) [11] and Trans-
MIL [13] for integrating these extracted patch
features. ABMIL is a simple yet robust MIL
approach, which is usually used for evaluation in
previous foundation model research [3, 4, 5]. Con-
sidering that we employed the pretrained Trans-
MIL as the “Teacher” in the proposed method,
we also present the performance of TransMIL
from scratch for all extractors. 2) Since we pre-
trained a TransMIL in the first stage in the
proposed paradigm, we additionally explore how
it collaborates with the pretrained patch extrac-
tor (Figure 3d), leading to an advanced ver-
sion (mSTAR+). We further compared the per-
formance of different extractors between being
equipped with a non-pretrained TransMIL (built
from scratch) and the pretrained TransMIL+
(Figure 3e).
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Fig. 3: Slide Classification Performance. a, Comparison of Macro-AUC between mSTAR and com-
pared methods on 12 slide classification tasks including 6 diagnostic subtasks and 6 molecular prediction
subtasks. They are evaluated with ABMIL and TransMIL trained from scratch, based on different patch
extractors. “Overall” refers to the average result between ABMIL and TransMIL. b, The average Macro-
AUC on 12 slide classification datasets. c-d, The slide classification performance (Macro-AUC and 95%
CI) on 6 diagnostic subtasks and 6 molecular prediction subtasks with ABMIL and TransMIL, respec-
tively. If the performance of mSTAR is the best one compared against the compared FMs, P-value would
be presented. mSTAR+ represents mSTAR (patch extractor) equipped with the pretrained aggregator
(TransMIL+). The colors of legends are shared across sub-figures a-d. e, The performance (Macro-AUC)
gains of the aggregator (TransMIL) between “before” and “after” pretraining among various datasets.
“Positive” values indicate performance increases compared with the ones equipped with TransMIL built
from scratch, and vice versa. Results of the bar chart in orange and green background are from diagnostic
tasks and molecular prediction, respectively. All of performance increases showed significant differences
with P < 0.05.

All comparisons are based on the metric of
Macro-AUC, a commonly used classification met-
ric, which does not rely on the selection of the
decision threshold and is insensitive to the sam-
ple ratio of various classes. Furthermore, to avoid

the impact of potential inherent bias in various
datasets and different MIL backbones, following
the previous research [1], the average rank of
Macro-AUC was reported as well (Figure 3a)
and the one-sided Wilcoxon signed-rank test was



performed on various datasets to examine the
statistical difference between mSTAR and other
FMs.

From an overall perspective, we assessed the
average rank and average Macro-AUC for mSTAR
and the compared foundation models across 12
diverse subtasks. The results showed that mSTAR
consistently achieved the first place across dif-
ferent tasks, regardless of different MIL back-
bones employed or when considering the over-
all performance. For the consistency of perfor-
mance improvements, Figure 3c-d (Extended
Data Table A2-A3) demonstrated that mSTAR
achieved the best performance on 11 out of 12
subtasks with ABMIL and 9 out of 12 subtasks
with TransMIL. When we incorporated the pre-
trained aggregator, TransMIL+, mSTAR+ won
other SOTA FMs on 10 out of 12 subtasks
(Extended Data Table A4).

When we delve into the specific metric of
Macro-AUC, we found that mSTAR achieved
the best performance with increases of +1.3%
overall (P < 0.001) compared to the second-best
model, UNI, as shown in Figure 3b. The upward
trends of average Macro-AUC were witnessed in
ABMIL and TransMIL, going from 0.905 to 0.908
(P < 0.001) and from 0.870 to 0.892 (+2.2%,
P < 0.005), respectively. These results indicate
that mSTAR has the promising ability of slide
classification in all. More detailed results for each
subtask are presented as follows.

mSTAR improves Slide-level Diagnostic
Tasks. Among diagnostic tasks, the consistent
improvements in ABMIL become apparent, as
mSTAR outperformed the second-best approach
on all diagnostic datasets with significant dif-
ferentiation (P < 0.001, Figure 3c). TransMIL
exhibited a similar trend (Figure 3d), in which
results on 4 out of 6 datasets indicated significant
differences.

When considering the incorporation with
the pretrained aggregator, mSTAR+ exhibited
further advancements on various datasets and
achieved the best on 5 out of 6 diagnostic tasks.
For example, compared to the second-best com-
pared FM, mSTAR+ outperformed by +2.01%
on CAMELYON (P < 0.001). Furthermore, an
interesting finding from Figure 3e (Extended
Data Table A4) was that the pretrained aggrega-
tor was even able to collaborate with other patch

extractors achieving critical performance gains,
although it was solely pretrained on features
extracted by mSTAR. As shown in Figure 3e, it
consistently displayed superior performance in the
majority of tasks for different FMs. Among these,
the pretrained aggregator achieved a notable
increase of up to +9.10% (P < 0.001) compared
to the one built from scratch, although there were
slight decreases (-1.15% at most) of performance
in some specific subtasks. From Figure 3e, we
also observed that the enhancements made to
CONCH, UNI, and mSTAR were not substantial,
which could be attributed to the fact that their
performances have already approached 100% and
the room for improvement was significantly lim-
ited on these 6 subtasks.

mSTAR improves Molecular Prediction.
Following the same evaluation strategy in diag-
nostic tasks, we also investigated its capability of
molecular prediction from tissue slides.

From the perspective of consistency, mSTAR
with ABMIL achieved the best performance on
5 out of 6 tasks (Figure 3¢ and Extended
Data Table A2), in which 4 tasks exhibited
a significance difference (P < 0.001). With
TransMIL, clearer improvements (Figure 3d and
Extended Data Table A3) were observed that 4
out of 6 tasks demonstrated a significant difference
(P < 0.05). Taking a closer look at Macro-AUC,
mSTAR outperformed other SOTA foundation
models by +2.23% overall with a critical difference
(P < 0.001) on average across different MIL back-
bones (Extended Data Table A2-A3). Specif-
ically, for TransMIL, a substantial increase of
+3.71% on average Macro-AUC across 6 molecu-
lar tasks was observed, although mSTAR achieved
slight improvement with ABMIL (P < 0.05). In
particular, substantial performance increases of
+4.64% and +4.21% were observed on BRCA-
Molecular and CRC-Molecular tasks (P < 0.001),
respectively.

In addition, when incorporating the pre-
trained aggregator TransMIL+ (Extended Data
Table A4), further improvements were achieved
where mSTAR+ outperformed the compared FMs
on 5 out of 6 datasets (Figure 3d, P < 0.001) by
+6.35% on CRC-Molecular, +2.93% on BCNB-
HER2, +1.82% on GBMLGG-IDH1 and +1.5%
on BCNB-ER. From Figure 3e, we observed
a similar trend that the majority of subtasks



demonstrated further enhancements for differ-
ent extractors. An interesting finding different
from that of diagnostic tasks was that perfor-
mance gains on CONCH and UNI, in which there
were no notable increases in diagnostic tasks,
demonstrated remarkable improvements in molec-
ular prediction (e.g., +13.10% on CRC-Molecular
and +7.70% on BRCA-Molecular for CONCH,
+9.00% on BRCA-Molecular and +6.29% on
BCNB-ER for UNI, P < 0.001). This validates
that the involvement of RNA-Seq data in pretrain-
ing contributes to facilitating molecular predic-
tion, as pretraining data used in CONCH and UNI
did not include gene expression profiles and our
aggregator was contrastively pretrained on RNA-
Seq data. It is worth noting that the pretrained
aggregator provided relatively modest gains for
our extractor mSTAR (+2.66% on GBMLGG-
IDH1, +2.14% on CRC-Molecular and +1.73% on
BCNB-HER2, P < 0.001). This can be explained
by the fact that the knowledge regarding gene
expression profiles has already been incorporated
into the patch extractor mSTAR through self-
taught training, which has resulted in satisfactory
performance in molecular prediction.

Overall, mSTAR demonstrates consistent
performance gains on both diagnostic tasks and
molecular prediction at the slide-level with a
significant difference, compared with prior patch-
level SOTA pathology foundation models. This
suggests that the modelling of whole-slide con-
texts is conducive to slide-level classifications.
Furthermore, incorporating the pretrained aggre-
gator is able to result in further improvements,
especially on molecular prediction tasks. In par-
ticular, when using the aggregator pretrained
on three modalities, those extractors that have
not been exposed to gene expression profiles can
acquire additional significant enhancements in
molecular prediction. This can be attributed to
the incorporation of RNA-Seq data during the
pretraining process, thereby providing additional
enhancements.

2.3 Pathological Survival Analysis
for Prognosis

Prognostic analysis is an intricate clinical
endeavor, necessitating a thorough analysis from

a multitude of facets. In this regard, the integra-
tion of multimodal data has proven instrumental
in enabling more comprehensive prognostic
assessments [8, 9, 10, 23]. Therefore, it is crucial
to delve into the exploration of the role of multi-
modal knowledge within the broader whole-slide
context in enhancing prognosis estimation. In this
study, we assessed a key prognostic task, overall
survival (OS) prediction, on top of pathological
tissue slides.

mSTAR advances Cancer Survival Predic-
tion. We investigate the capability of predicting
overall survival (OS) across 9 diverse cancers,
based on the metric of C-Index, a metric com-
monly used in survival prediction. To avoid data
leakage, the data used for evaluation were held
out from pretraining data. To ensure the reliable
evaluation, we excluded cancer types with fewer
than 400 cases or those with too few uncensored
data out of the 32 cancer datasets in TCGA [19],
resulting in 9 cancer datasets: Breast Invasive
Carcinoma (BRCA), Colon Adenocarcinoma and
Rectum Adenocarcinoma (CRC), Glioblastoma
Multiforme and Brain Lower Grade Glioma
(GBMLGG), Head and Neck Squamous Cell
Carcinoma (HNSC), Kidney Renal Clear Cell Car-
cinoma (KIRC), Lung Adenocarcinoma (LUAD),
Lung Squamous Cell Carcinoma (LUSC), Skin
Cutaneous Melanoma (SKCM) and Uterine Cor-
pus Endometrial Carcinoma (UCEC). Similarly,
following the settings of slide-level classification,
we also used ABMIL and TransMIL for evaluat-
ing patch extractors and then the performance
of the pretrained slide aggregator was assessed.
More details are presented in Section 4.3.

For consistency of performance increases,
mSTAR performed best compared to other foun-
dation models, where Figure 4a shows that
mSTAR always ranked in front of other foun-
dation models for different MIL backbones and
the overall performance. When considering each
individual subtask, mSTAR achieved the best per-
formance on 7 out of 9 datasets with ABMIL
(Figure 4c and Extended Data Table A5), in
which 5 tasks demonstrated a significant difference
(P < 0.01) compared to the second-best approach.
With TransMIL (Figure 4d and Extended
Data Table A6), mSTAR presented more con-
sistent improvements, which outperformed com-
pared approaches on 8 out of 9 cancer types and
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Fig. 4: Pathological Survival Analysis Performance. a, Comparison of C-Index between mSTAR
and compared methods on 9 TCGA datasets. They are evaluated with ABMIL and TransMIL trained
from scratch, based on different patch extractors. “Overall” refers to the average results between ABMIL
and TransMIL. b, The average C-Index on 9 TCGA datasets. c-d The survival analysis performance (C-
Index and 95% CI) on 9 TCGA datasets with ABMIL and TransMIL, respectively. If the performance
of mSTAR is the best one compared against the compared FMs, P-value would be presented. mSTAR+
represents mSTAR (patch extractor) equipped with the pretrained aggregator (TransMIL+). The col-
ors of legends are shared across sub-figures a-d. e The performance (C-Index) gains of the aggregator
(TransMIL) between “before” and “after” pretraining among 9 TCGA cancer types. “Positive” values
indicate performance increases compared with the ones equipped with TransMIL built from scratch, and
vice versa. All of performance increases showed significant differences with P < 0.05, except the ones
marked by x.

showed significant improvements compared to the
second-best method in 7 cancer types (P < 0.001).

When specifically assessing the C-Index met-
ric, the average C-Index showcased significant
performance gains compared against the second-
best model (UNI) by 4+1.98% for TransMIL (P <
0.005), +0.53% for ABMIL (P < 0.05), and
+1.30% for the average performance of differ-
ent MIL backbones (Overall, P < 0.001). Next,

we delved into details of performances across 9
datasets, where we observed apparent improve-
ments (P < 0.001) of +3.7% on SKCM, +3.34%
on LUAD, +2.87% on LUSC and +1.03% on
UCEC over the second-best model based on
TransMIL (4d and Extended Data Table A6).
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These results indicated the effectiveness of multi-
modal knowledge involved in mSTAR in extract-
ing discriminative features for distinguishing com-
plex survival patterns in pathological images.

We also investigated the performance of incor-
porating the pretrained aggregator. From obser-
vations of Figure 4d, mSTAR+ equipped with
the pretrained aggregator pushed performance
to higher levels (+5.23% on SKCM, +4.9% on
UCEC, +2.96% on BRCA, +2.60% on KIRC
and 4+2.33% on CRC, P < 0.001) compared to
the second-performing approaches. By comparing
TransMIL “before” and “after” pretraining for
various extractors (Figure 4e, Extended Data
Table AT), we observed that, in the majority of
cases, the pretrained aggregator exhibited supe-
rior performance, surpassing the one built from
scratch by a margin of up to +7.79% (P <
0.001). This indicates the introduction of pathol-
ogy report and gene expression profiles is bene-
ficial to survival analysis by providing additional
expert knowledge and molecular information. In
addition, a similar trend to that of slide classifica-
tion was observed that, PLIP and CONCH that
had a lack of knowledge of gene expression pro-
files exhibited more notable improvements than
mSTAR, when collaborating with our aggrega-
tor pretrained on gene data. This supports the
analysis illustrated in the results of slide classifi-
cation again, in which multimodal knowledge has
been transferred into the patch extractor mSTAR,
leading to relatively moderate improvements when
using the pretrained aggregator. In other words,
mSTAR itself has absorbed the knowledge in
pathology reports and gene expression profiles,
which has contributed to survival prediction.

To sum up, mSTAR demonstrated similar
trends on both slide classification and survival
analysis with consistent improvements, which
repeatedly validated its capability on unimodal
pathological clinical tasks. Additional results on
the pretrained aggregator, on the one hand, pro-
vided extra evidence of the significance of pathol-
ogy reports and RNA-Seq data at the whole-slide
context, especially on molecular prediction and
survival analysis. On the other hand, it indi-
cated that mSTAR itself could acquire multimodal
knowledge at the slide level, thereby resulting in
better performance in these diverse tasks.

11

2.4 Multimodal Capability

Multimodal contrastive pretraining naturally
allows the model to be applied to multimodal
downstream tasks. In this study, since mSTAR
aligned multimodal data that may contribute
to alleviating inter-modal heterogeneity, we
first examine whether features extracted by
mSTAR facilitate multimodal fusion by assess-
ing multimodal survival analysis tasks. Next, we
investigate more cross-modal abilities, including
slide-level few-shot and zero-shot classification
and pathological report generation.

mSTAR facilitates Multimodal Fusion. The
involvement of multimodal data in the pretrain-
ing process can enhance the model’s capability
of capturing complex interactions across different
modalities and aligning each other by contrastive
learning, thereby potentially alleviating the het-
erogeneity of different modalities and improving
its performance on a wider range of cancer types.
To validate this, we replaced pathological fea-
tures with ones extracted by various extractors in
existing multimodal fusion models for 9 TCGA
cancer survival prediction tasks, to observe the
differences that would arise. Specifically, recent
SOTA multimodal fusion models were employed
in this study, including MCAT [8], Porpoise [24],
MOTCat [9] and CMTA [10].

On the whole, mSTAR has clearly outper-
formed other SOTA methods by a wide mar-
gin. Considering average rank, mSTAR ranked
between 1.22 and 1.67 among various fusion mod-
els and the overall rank is 1.47, which left the
second-best approach UNI far behind (Figure 5a)
ranking at 2.56 to 3.00 and 2.68 on average. For
average C-Index (Figure 5b), mSTAR achieved
consistent and notable enhancement in multi-
modal fusion with a significant difference, with
average performance increases of +1.8% (P <
0.001). Among different multimodal fusion mod-
els, mSTAR outperformed the second-best UNI by
+1.7% (P = 0.02) for MCAT, +1.1% (P = 0.01)
for Porpoise, +2.5% (P < 0.005) for MOTCat and
+1.9% (P < 0.005) for CMTA.

Across various datasets, based on MCAT,
mSTAR surpassed other SOTA approaches on 7
out of 9 tasks (Figure 5c and Extended Data
Table AR), especially on LUAD (4+3.3%, P <
0.001) and BRCA (+1.9%, P < 0.001). In the case



a Average Rank b I R50 [ PLIP[_] CONCH[__] UNI[EE mSTAR (Ours)
45 4.0 35 30 25 20 15 10 Average C-Index
) | ) ) ) \ X | ) | ) | ) | 066 068 070 072
\ . f \
=3 .
Q7 o mAvVY <o S P=0.02
L = +1.7%
[}
g 2
3 QA 5] v <o I P=001
S 3]
T o
3 ;
5 (6] A ] \v4 O g P=0.004
D= = +2.5%
< <
S @ A ® \% < s 0 P=0.002
N ° +1.9%
T 3
2 © A A% <o 2 0678 P<0.001
S O e i +1.8%
c MCAT d MOTCat
P <0.001 P_0.814 P<0.001 P <0.001.P - 0.804 P_0257 P<0.001 P<0.001 P<0.001 P <0001 P<0.001 P<0.001 P<0.001
0.90 - 0.90 H
0.75 0.75
3 3
2 2
[$) &)
0.60 0.60
045 1 || | | | 0.45 1 |
BRCA CRC GBMLGGHNSC KIRC LUAD LUSC SKCM UCEC BRCA CRC GBMLGGHNSC KIRC LUAD LUSC SKCM UCEC
e Porpoise f CMTA
P <0.001P=0.048 P<0.001 P=0.009 P <0.001 P <0.001 P <0.001 P=0.041 P<0.001 P<0.001 P<0.001 P <0.001 P <0.001
0.90 - H 0.90 1 H
0.75 0.75
x x
[0 [0
he) el
2 2
%) I8)
0.60 0.60
0.45 - ] 0.45 1 |
BRCA CRC GBMLGGHNSC KIRC LUAD LUSC SKCM UCEC BRCA CRC GBMLGGHNSC KIRC LUAD LUSC SKCM UCEC

Fig. 5: Multimodal Survival Analysis Performance. a, Comparison of C-Index between mSTAR
and compared methods on 9 TCGA datasets. They are evaluated with different multimodal fusion models,
MCAT, Porpoise, MOTCat and CMTA trained from scratch based on the compared patch extractors and
mSTAR. “Overall” refers to the average results among these multimodal fusion methods. b, The average
C-Index on 9 TCGA datasets. c-f The survival analysis performance (C-Index and 95% CI) on 9 TCGA
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one compared against the compared FMs, P-value would be presented. The colors of legends are shared
across all sub-figures.
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13



of MOTCat, mSTAR excelled in 7 out of 9 tasks
(Figure 5d and Extended Data Table A10)
with performance increases of 0.6%-4.8% (P <
0.001). mSTAR with Porpoise demonstrated supe-
rior performance in the majority of tasks, topping
5 out of 9 datasets (Figure 5e and Extended
Data Table A9), which increased the second-best
model by up to +3.8% (P < 0.001). For CMTA,
mSTAR delivered the highest performance in 7 of
9 (Figure 5f and Extended Data Table All),
advancing the second-best one by 0.4%-4.1% (P <
0.001).

In a nutshell, the remarkable increases across
various datasets and diverse multimodal fusion
backbone models vividly demonstrate the tremen-
dous contributions of multimodal knowledge
embedded by slide-level multimodal contrastive
learning in facilitating multimodal fusion.

mSTAR advances Few-shot Slide Classifica-
tion. Few-shot learning aims to achieve accurate
prediction using only a small number of labeled
data for each class, which is especially valuable
in the context of medical scenarios where data
scarcity is a common challenge. The ability of
generalizing to new tasks with a few labels can be
enhanced by multimodal data by offering a more
comprehensive and diverse set of information. In
this study, we investigated the few-shot capability
of different patch extractors given different shots
of labeled slides.

To ensure that the pretrained extractor can
solely rely on the limited labeled slides pro-
vided, we excluded TCGA classification subtasks
for evaluation, since mSTAR was pretrained on
TCGA data. As a result, every patch extractor
was assessed on 6 slide classification subtasks,
CAMELYON, PANDA, UBC-OCEAN, BCNB-
ER, BCNB-PR and BCNB-HER2. To enable the
few-shot classification in the context of multiple
instance learning, we proposed MI-Fewshot, as
illustrated in Figure 6a and the Section 4.3. It
utilizes a pretrained text encoder to select the
most relevant patches from a limited amount of
labeled data using similarity scores. These selected
patches are then averaged to form the class
prototype for accomplishing few-shot classifica-
tion. Since MI-Fewshot requires a pretrained text
encoder, we equipped those vision-only extrac-
tors, i.e., R50 and UNI, with the pretrained
text encoder of mSTAR for assessment, while
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other extractors used their own designated text
encoders.

Across 6 subtasks, mSTAR ranked the 1st
place overall and achieved the best performance
on 4 subtasks (Figure 6b and Extended Data
Table A12), where mSTAR outperformed second-
best FMs on average by a large margin (+4.1%
on Camelyon, +1.0% on UBC-OCEAN, +2.0%
on BCNB-PR and +0.9% for overall), as shown
in Figure 6¢ (Extended Data Table A12). To
demonstrate the benefits of multimodal knowl-
edge, we also presented the performance increase
compared to the vision-only SOTA FM, UNI. On
4 out of 6 subtasks, mSTAR exhibited better per-
formance on average, with an additional increase
on PANDA by +1.7%.

Following previous studies [4], we examined
performance on varying shots of every subtask
(Figure 6d-i and Extended Data Table A13-
A18). We observed that mSTAR has showcased
superior performance with a larger margin when
given fewer slides on Camelyon, while the per-
formance gap has gradually diminished as the
number of slides increased. This indicated mSTAR
performed better on the setting with fewer slides.
On UBC-OCEAN, mSTAR always performed the
best. For PANDA, mSTAR consistently outper-
formed vision-only UNI across varying shots,
which also indicated the effectiveness of multi-
modal knowledge.

All in all, these results demonstrated mSTAR
advanced generalization capabilities in label-
efficient scenarios, which could be attributed
to slide-level multimodal contrastive learning.
Specially, by comparing with vision-only FMs,
mSTAR showcased clear superiority, which indi-
cated the extra benefit of multimodal knowledge.

mSTAR enables Zero-shot Slide Clas-
sification. In the context of open clinical
practice, out-of-the-box capability of diag-
nostic decision-making without the need for
task-specific fine-tuning is crucial for efficient
utilization of multimodal models, especially in
resource-constrained scenarios where the access
to sufficient data and computational resources
may be limited, such as underdeveloped areas.
Therefore, we also evaluated zero-shot’s capa-
bility of each extractor on 6 slide classification
subtasks where we excluded TCGA subtasks as
well, following the similar settings in few-shot’s
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evaluation. To produce slide-level predictions
for patch extractors, MI-Zero [25] was adopted
through top-K patches voting based on patch
similarities to class prototypes embedded by the
pretrained text encoders (Figure 7a).

Across 6 slide subtasks, mSTAR outperformed
other FMs on half of the tasks and performed
best on the overall result (Figure 7b and c).
Similarly, we also compared mSTAR with the
vision-only FM, UNI, to validate the effectiveness
of multimodal knowledge injection. As a result,
notable performance increases were observed on
4 of 6 tasks, and meanwhile mSTAR achieved a
comparable performance with UNI on an extra
UBC-OCEAN task. Specifically, compared to the
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second-best FM, UNI, mSTAR achieved clear
enhancement in these tasks by +3.1% on aver-
age (P < 0.001) with a significant difference. In
particular, on BCNB-ER task, a remarkable rise
of 49.4% (P < 0.001) was observed compared
to the second-best FM, UNI, and we further saw
performance enhancement over UNI from 0.618 to
0.725 (+10.7%, P < 0.001). For CAMELYON and
BCNB-PR, there were notable boosts of +5.7%
and +4.0% over the second-performing FM (P <
0.001), respectively. For PANDA, mSTAR signif-
icantly enhanced UNI from 0.45 to 0.462 (P <
0.001).

Overall, despite not being the best performing
on all subtasks, mSTAR clearly outperformed the
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- Tumor sized 5 x 3 x 3 cm found in the upper outer quadrant, located 3 cm from
the upper boundary

- Left breast sized 19 x 8 x 9 cm removed along with axillary tissues sized 5 x 3 x

BLEU-4

METEOR ROUGE-L

Specimens:

A. Sentinel lymph node #1 left axilla
B. Sentinel lymph node #2 left axilla
C. Sentinel lymph node #2 left axilla
D. Sentinel lymph node #3 left axilla
E. Sentinel lymph node #4 left axilla
F. Sentinel lymph node #3 left axilla
G. Sentinel lymph node #4 left axilla
H. Sentinel lymph node #4 left axilla
I. Sentinel lymph node #4 left axilla

J. Sentinel lymph node #3 left axilla
K. Sentinel lymph node #4 left axilla

Final Diagnosis:

Part 1: Lymph Nodes Right Pelvic Excision:

- No evidence of neoplasia in the nine (09) lymph nodes examined.
Part 2: Lymph Nodes Left Pelvic Excision:

- No evidence of neoplasia in the nine lymph nodes examined.
Part 3: Prostate and Bilateral Seminal Vesicles Radical Prostatectomy:
A. Invasive poorly differentiated adenocarcinoma

- Gleason score: 3+4=7

B. Carcinoma involvement:

- Both the right and left lobes

- Greatest nodular diameter: 13 cm

C. Carcinoma involvement of prostate volume:

- Approximately 15% of the examined prostate volume

D. Carcinoma involvement:

PLIP

Final Diagnosis:

Part 1: Kidney Left Radical Nephrectomy:

A. Renal cell carcinoma, conventional clear cell type
- Fuhrman's nuclear grade: 3 out of 4

- Size: 4 cm in greatest dimension

B. The neoplasm is confined within the renal capsule.
C. No invasion of the renal vein is identified.

D. Renal vein is identified.

E. No evidence of angiolymphatic invasion is identified.
F. All surgical margins are free of tumor.

G. Non-neoplastic kidney is unremarkable.

H. No evidence of adrenal gland is identified.
Pathologic Stage: PT1b Nx Mx

R50

Fig. 8: Pathology Report Generation Performance. a, quantitative results (BLEU-1-4, METEOR
and ROUGE-L) of various compared models and mSTAR. b, an example of report generation, where texts
in red boxes are grount-truth from doctors and ones in dark green boxes are generated with pathological
features from various models. The words highlighted in green are aligned with ground-truth, while ones
marked in red are missing by mSTAR from ground-truth.

second-best FM with a large margin on half of the
subtasks. When compared with the vision-only
FM, mSTAR performed better or comparative
on 5 out of 6 subtasks, which indicates the
effectiveness of multimodal contrastive learning.
These results showcased that mSTAR can achieve
notable advancements in its out-of-the-box abil-
ity on certain subtasks. However, there is still
considerable room for further enhancements.
The integration of additional multimodal data
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through the pretraining approach of mSTAR has
the potential to enhance its zero-shot capability.

mSTAR excels in Pathological Report
Generation. Automated generation of pathol-
ogy reports has enormous potential in simplifying
the report-writing process and reducing the work-
load burden on pathologists. Next, we assessed
its capability of report generation on TCGA
datasets. It is worth mentioning that cases used



for evaluation are completely held out from
the pretraining materials. We presented both
quantitative and qualitative results.

From the quantitative perspective, we evalu-
ated multiple metrics including BLEU, METEOR
and ROUGE-L to assess various aspects of the
generated text, such as precision of n-grams (con-
tiguous sequences of words), order, alignment,
recall, etc. Across different metrics, mSTAR con-
sistently outperformed the second-best approach
by nearly 1% (Figure 8a and Extended Data
Table A20), which indicates better quality of
generated reports.

We continued to qualitatively evaluate the
quality of generated reports. A case study is pre-
sented in Figure 8b and more cases are provided
in the Extended Data Figure Al. From the
case of Figure 8b, we found that mSTAR is able
to more accurately generate important diagnos-
tic facts with minimal omissions, such as clinical
diagnosis. The result of Figure 8b generated
by CONCH, PLIP and R50 contain a signifi-
cant number of factual errors. Compared with
the second-best approach, UNI, mSTAR is capa-
ble of generating immunohistochemical results on
top of H&E WHSIs, such as HER2, which may
be attributed to the involvement of gene expres-
sion data in pretraining. This may align with the
earlier investigation of mSTAR’s superior perfor-
mance in molecular prediction. From the case of
Extended Data Figure Ala, mSTAR is able to
generate the majority of key diagnostic informa-
tion, while other FM just produced a few key
words. The case of Extended Data Figure Alb
demonstrated that mSTAR excelled in produc-
ing precise histologic type and grade, while the
majority of the results generated by other FMs
are factually incorrect. Although UNI included
grading information in the case of Extended
Data Figure Alc, the result of pathological T
staging was significantly erroneous. This can be
attributed to the involvement of gene expression
profiles, since RNA-Seq data are known to be
strong indicators of staging [26, 27], subtyping [28]
and grading [29, 30]. However, all FMs are unable
to provide accurate quantity estimations, such as
lesion sizes and tumor location. The possible rea-
sons for the failure of quantity estimations are that
they lack information regarding the magnification
and locations of target objects mentioned in a cer-
tain report. These pieces of information are likely
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recorded by doctors during the specimen collec-
tion process and cannot be directly inferred from
the WSI.

In conclusion, the multimodal data endows
mSTAR with unique knowledge from each modal-
ity, such as identifying molecular profiles, enabling
it to generate more comprehensive and accurate
reports. These encouraging results underscored
the potential of mSTAR for report generation and
its significance in pathological decision-making.

3 Discussion

In this study, we delve into how to harness
the full potential of multimodal data to effec-
tively advance the performance of the pathology
foundation models and bridge the gaps of previ-
ous foundation models in multimodal capabilities.
Additionally, we explored a new whole-slide pre-
training paradigm for CPath, which broadened
the context of modelling for better performance
on slide-level tasks. We curated the largest mul-
timodal dataset consisting of WSIs, pathology
reports and RNA-Seq data, which contained over
26k public modality pairs from 10,275 patients
across 32 major cancer types. Diverse experi-
mental results on 43 subtasks demonstrated that
mSTAR excelled in not only unimodal tasks but
also multimodal tasks at the slide level. In partic-
ular, with the inclusion of gene expression data,
mSTAR performed well in slide-level molecular
prediction. Furthermore, multimodal contrastive
learning facilitated multimodal fusion tasks and
endowed the model with more generalized capa-
bilities in low-shot scenarios. Simultaneously, the
incorporation of clinical pathology reports in the
pretraining process resulted in the advanced capa-
bility of report generation by providing the expert
knowledge.

In the realm of prior investigations into pathol-
ogy foundation models, two prominent categories
have emerged: vision-only models [3, 31, 5] and
vision-language models [4, 2]. However, these
approaches fail to tap into a vast wealth of infor-
mation inherent in clinical pathology reports and
gene expression profiles. Pathology reports usually
provide authentic expert knowledge in line with
the clinical practice, while gene expression pro-
files always serve as robust indicators of disease
status for clinical applications in diagnosis [32]
and prognosis [33]. As shown in Extended Data



Table Al, the involvement of pathology reports
and gene expression data can bring extra per-
formance gains. We also found that there was
still considerable room for further improvement
in molecular prediction, multimodal fusion for
survival analysis and report generation in exist-
ing FMs, which can benefit from the inherent
knowledge in pathology reports [34] and gene
expression profiles [29, 28, 30]. Simultaneously, we
notice that the majority of existing FMs primarily
focus on patch/ROI-level models and short texts,
in which restricted contexts hinder their practi-
cal performance in slide-level clinical applications,
such as survival analysis and report generation.
It is worth noting that, unlike CONCH super-
vised by generative loss, mSTAR without involv-
ing generative components in pretraining, still
demonstrated encouraging performance in report
generation with producing more comprehensive
texts. Recently, beyond working on small patch-
es/ROIs, we noticed that a study attempted to
work on slide-level foundation models, which pre-
trained the model on patch features. However,
the pretrained performance significantly depends
on the quality of patch features. In other words,
their performance would be limited by the patch
extractor. We believe that end-to-end pretraining
is a promising solution in the future, while its
current implementation is hindered by hardware
limitations. Therefore, mSTAR bridges this gap
through self-taught training to seamlessly trans-
fer the knowledge captured by the slide aggregator
into the patch extractor.

Distinct from previous researches, our study
provides the uniqueness in two folds. First, our
findings showcase the remarkable power of lever-
aging multimodal data to drive the progress
of pathology foundation models, especially in
enhancing multimodal capabilities. Second, we
found a unified way to bridge the gap between
slide-level and patch-level pretraining, bringing
us closer to achieving end-to-end pretraining on
raw slide data. We believe this innovative uni-
fied paradigm will revolutionize the workflow of
pretraining for CPath. Moreover, this paradigm
allows the injection of multimodal knowledge into
pathology foundation models in an appropriate
manner, which may hold the potential to harness
more modalities to construct a stronger founda-
tion model for CPath.
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Although preliminary results are encouraging,
this study still has several limitations. First, a
key limitation is the scale of data for pretraining
compared to previous works of pathology founda-
tion models. By expanding the scale of multimodal
data for pretraining, we can expect to unlock fur-
ther potential for enhancing various abilities, such
as multimodal capabilities. Second, we still poten-
tially have a long way to go before achieving the
true end-to-end foundation model. Before that,
mSTAR will serve as an alternative solution to
seamlessly bridge slide-level and patch-level pre-
training. However, there are still several challenges
to be further explored, such as the appropri-
ate way to propagate the pretrained knowledge
embedded in the slide aggregator and the archi-
tectural design of slide aggregator. In mSTAR,
due to a large number of patches of a WSI that
would lead to extremely high computational costs,
we selected TransMIL with linear time complex-
ity as the slide aggregator. However, the increase
in training speed comes at the expense of sacrific-
ing a portion of the performance. Fortunately, a
multitude of innovative architectures for handling
long sequences are emerging, such as Mamba [35],
LongNet [36], etc, which we explore in concurrent
work [37]. We believe that these new architectures
will undoubtedly create new avenues in exploring
more efficient and powerful pretraining paradigms
for CPath. In the future, we plan to incorpo-
rate more multimodal data into pretraining, such
as multi-omics data, and explore new efficient
pretraining architecture.

References

[1] Janez Demsar. Statistical comparisons of
classifiers over multiple data sets. The Jour-
nal of Machine learning research, 7:1-30,
2006.

Zhi Huang, Federico Bianchi, Mert Yuksek-
gonul, Thomas J Montine, and James Zou. A
visual-language foundation model for pathol-
ogy image analysis using medical twitter.
Nature medicine, 29(9):2307-2316, 2023.
Richard J Chen, Tong Ding, Ming Y Lu,
Drew FK Williamson, Guillaume Jaume,
Andrew H Song, Bowen Chen, Andrew
Zhang, Daniel Shao, Muhammad Shaban,
et al. Towards a general-purpose foundation



[11]

model for computational pathology. Nature
Medicine, 30(3):850-862, 2024.

Ming Y Lu, Bowen Chen, Drew FK
Williamson, Richard J Chen, Ivy Liang,
Tong Ding, Guillaume Jaume, Igor Odintsov,
Long Phi Le, Georg Gerber, et al. A visual-
language foundation model for computational
pathology. Nature Medicine, 30(3):863—-874,
2024.

Hanwen Xu, Naoto Usuyama, Jaspreet
Bagga, Sheng Zhang, Rajesh Rao, Tristan
Naumann, Cliff Wong, Zelalem Gero, Javier
Gonzalez, Yu Gu, et al. A whole-slide
foundation model for digital pathology from
real-world data. Nature, pages 1-8, 2024.
Gemini Team, Rohan Anil, Sebastian
Borgeaud, Yonghui Wu, Jean-Baptiste
Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth,
et al. Gemini: a family of highly capa-
ble multimodal models. arXiv preprint
arXiw:2312.11805, 2023.

Muhammad  Uzair Khattak, Hanoona
Rasheed, Muhammad Maaz, Salman Khan,
and Fahad Shahbaz Khan. Maple: Multi-
modal prompt learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 19113-19122,
2023.

Richard J Chen, Ming Y Lu, Wei-Hung
Weng, Tiffany Y Chen, Drew FK Williamson,
Trevor Manz, Maha Shady, and Faisal
Mahmood. Multimodal co-attention trans-
former for survival prediction in gigapixel
whole slide images. In Proceedings of
the IEEE/CVF' International Conference on
Computer Vision, pages 4015—-4025, 2021.
Yingxue Xu and Hao Chen. Multimodal
optimal transport-based co-attention trans-
former with global structure consistency
for survival prediction. In Proceedings of
the IEEE/CVF' International Conference on
Computer Vision, pages 21241-21251, 2023.
Fengtao Zhou and Hao Chen. Cross-modal
translation and alignment for survival analy-
sis. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages
21485-21494, 2023.

Maximilian Ilse, Jakub Tomczak, and Max
Welling. Attention-based deep multiple

19

[12]

[13]

[14]

[15]

[16]

[17]

instance learning. In International confer-
ence on machine learning, pages 2127-2136.
PMLR, 2018.

Ming Y Lu, Drew FK Williamson, Tiffany Y
Chen, Richard J Chen, Matteo Barbieri,
and Faisal Mahmood. Data-efficient and
weakly supervised computational pathology
on whole-slide images. Nature Biomedical
Engineering, 5(6):555-570, 2021.

Zhuchen Shao, Hao Bian, Yang Chen, Yifeng
Wang, Jian Zhang, Xiangyang Ji, et al.
Transmil: Transformer based correlated mul-
tiple instance learning for whole slide image
classification. Advances in neural information
processing systems, 34:2136-2147, 2021.
Babak FEhteshami Bejnordi, Mitko Veta,
Paul Johannes Van Diest, Bram Van Gin-
neken, Nico Karssemeijer, Geert Litjens,
Jeroen AWM Van Der Laak, Meyke Hermsen,
Quirine F Manson, Maschenka Balkenhol,
et al. Diagnostic assessment of deep learn-
ing algorithms for detection of lymph node
metastases in women with breast cancer.
Jama, 318(22):2199-2210, 2017.

Peter Bandi, Oscar Geessink, Quirine Man-
son, Marcory Van Dijk, Maschenka Balken-
hol, Meyke Hermsen, Babak Ehteshami
Bejnordi, Byungjae Lee, Kyunghyun Paeng,
Aoxiao Zhong, et al. From detection of indi-
vidual metastases to classification of lymph
node status at the patient level: the came-
lyonl7 challenge. IEEFE transactions on
medical imaging, 38(2):550-560, 2018.
Wouter Bulten, Kimmo Kartasalo, Po-
Hsuan Cameron Chen, Peter Strom, Hans
Pinckaers, Kunal Nagpal, Yuannan Cai,
David F Steiner, Hester Van Boven, Robert
Vink, et al. Artificial intelligence for diagno-
sis and gleason grading of prostate cancer: the
panda challenge. Nature medicine, 28(1):154—
163, 2022.

Maryam Asadi-Aghbolaghi, Hossein Fara-
hani, Allen Zhang, Ardalan AXkbari,
Sirim Kim, Ashley Chow, Sohier Dane,
OCEAN Challenge Consortium, OTTA Con-
sortium, David G Huntsman, et al. Machine
learning-driven histotype diagnosis of ovar-
ian carcinoma: Insights from the ocean ai
challenge. medRziv, pages 2024-04, 2024.
Hossein Farahani, Jeffrey Boschman, David
Farnell, Amirali Darbandsari, Allen Zhang,



[19]

[20]

[23]

[24]

Pouya Ahmadvand, Steven JM Jones, David
Huntsman, Martin Kobel, C Blake Gilks,
et al. Deep learning-based histotype diagnosis
of ovarian carcinoma whole-slide pathology
images.  Modern Pathology, 35(12):1983—
1990, 2022.

John N Weinstein, Eric A Collisson, Gor-
don B Mills, Kenna R Shaw, Brad A Ozen-
berger, Kyle Ellrott, Ilya Shmulevich, Chris
Sander, and Joshua M Stuart. The can-
cer genome atlas pan-cancer analysis project.
Nature genetics, 45(10):1113-1120, 2013.
Mengdan Zhu, Bing Ren, Ryland Richards,
Matthew Suriawinata, Naofumi Tomita, and
Saeed Hassanpour. Development and eval-
uation of a deep neural network for histo-
logic classification of renal cell carcinoma on
biopsy and surgical resection slides. Scientific
reports, 11(1):7080, 2021.

Feng Xu, Chuang Zhu, Wenqi Tang, Ying
Wang, Yu Zhang, Jie Li, Hongchuan Jiang,
Zhongyue Shi, Jun Liu, and Mulan Jin. Pre-
dicting axillary lymph node metastasis in
early breast cancer using deep learning on
primary tumor biopsy slides. Frontiers in
Oncology, page 4133, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren,
and Jian Sun. Identity mappings in deep
residual networks. In Computer Vision—
ECCV 2016: 14th FEuropean Conference,
Amsterdam, The Netherlands, October 11—
14, 2016, Proceedings, Part IV 14, pages
630—-645. Springer, 2016.

Yilan Zhang, Yingxue Xu, Jiangi Chen,
Fengying Xie, and Hao Chen. Prototypical
information bottlenecking and disentangling
for multimodal cancer survival prediction.
In The Twelfth International Conference on
Learning Representations.

Richard J Chen, Ming Y Lu, Drew FK
Williamson, Tiffany Y Chen, Jana Lip-
kova, Zahra Noor, Muhammad Shaban,
Maha Shady, Mane Williams, Bumjin Joo,
et al. Pan-cancer integrative histology-
genomic analysis via multimodal deep learn-
ing. Cancer Cell, 40(8):865-878, 2022.

Ming Y Lu, Bowen Chen, Andrew Zhang,
Drew FK Williamson, Richard J Chen, Tong
Ding, Long Phi Le, Yung-Sung Chuang,
and Faisal Mahmood. Visual language pre-
trained multiple instance zero-shot transfer

20

[26]

[27]

[28]

[29]

[31]

for histopathology images. In Proceedings
of the IEEE/CVF conference on computer
viston and pattern recognition, pages 19764~
19775, 2023.

Sudhanshu Shukla, Joseph R Evans,
Rohit Malik, Felix Y Feng, Saravana M
Dhanasekaran, Xuhong Cao, Guoan Chen,
David G Beer, Hui Jiang, and Arul M Chin-
naiyan. Development of a rna-seq based
prognostic signature in lung adenocarci-
noma. JNCI: Journal of the National Cancer
Institute, 109(1):djw200, 2017.

Jin-Cheng Guo, Yang Wu, Yang Chen, Feng
Pan, Zhi-Yong Wu, Jia-Sheng Zhang, Jian-Yi
Wu, Xiu-E Xu, Jian-Mei Zhao, En-Min Li,
et al. Protein-coding genes combined with
long noncoding rna as a novel transcriptome
molecular staging model to predict the sur-
vival of patients with esophageal squamous
cell carcinoma. Cancer communications,
38:1-13, 2018.

Milad Mostavi, Yu-Chiao Chiu, Yufei Huang,
and Yidong Chen. Convolutional neural net-
work models for cancer type prediction based
on gene expression. BMC medical genomics,
13:1-13, 2020.

Mei Wang, Daniel Klevebring, Johan Lind-
berg, Kamila Czene, Henrik Grénberg, and
Mattias Rantalainen. Determining breast
cancer histological grade from rna-sequencing
data. Breast Cancer Research, 18:1-13, 2016.
Y Wang, B Acs, S Robertson, B Liu, Leslie
Solorzano, Carolina Wahlby, J Hartman, and
M Rantalainen. Improved breast cancer his-
tological grading using deep learning. Annals
of Oncology, 33(1):89-98, 2022.

Eugene Vorontsov, Alican Bozkurt, Adam
Casson, George Shaikovski, Michal Zele-
chowski, Siqi Liu, Philippe Mathieu, Alexan-
der van Eck, Donghun Lee, Julian Viret,
et al. Virchow: A million-slide digital
pathology foundation model. arXiv preprint
arXww:2309.07778, 2023.

Mingye Hong, Shuang Tao, Ling Zhang, Li-
Ting Diao, Xuanmei Huang, Shaohui Huang,
Shu-Juan Xie, Zhen-Dong Xiao, and Hua
Zhang. Rna sequencing: new technologies and
applications in cancer research. Journal of
hematology € oncology, 13:1-16, 2020.
David G Beer, Sharon LR Kardia, Chiang-
Ching Huang, Thomas J Giordano, Albert M



[34]

[41]

[42]

Levin, David E Misek, Lin Lin, Guoan Chen,
Tarek G Gharib, Dafydd G Thomas, et al.
Gene-expression profiles predict survival of
patients with lung adenocarcinoma. Nature
medicine, 8(8):816-824, 2002.

Zhengrui Guo, Jiabo Ma, Yingxue Xu, Yihui
Wang, Liansheng Wang, and Hao Chen.
Histgen: Histopathology report generation
via local-global feature encoding and cross-
modal context interaction. arXiv preprint
arXiw:2403.05396, 2024.

Albert Gu and Tri Dao. Mamba: Linear-
time sequence modeling with selective state
spaces. arXiw preprint arXiv:2312.00752,
2023.

Jiayu Ding, Shuming Ma, Li Dong, Xingxing
Zhang, Shaohan Huang, Wenhui Wang, Nan-
ning Zheng, and Furu Wei. Longnet: Scaling
transformers to 1,000,000,000 tokens. arXiv
preprint arXiw:2307.02486, 2023.

Shu Yang, Yihui Wang, and Hao Chen. Mam-
bamil: Enhancing long sequence modeling
with sequence reordering in computational
pathology. arXwv preprint arXiv:2403.06800,
2024.

Bo Li and Colin N Dewey. Rsem: accurate
transcript quantification from rna-seq data
with or without a reference genome. BMC
bioinformatics, 12:1-16, 2011.

Abhishek Sarkar and Matthew Stephens.
Separating measurement and expression
models clarifies confusion in single-cell rna
sequencing analysis. Nature genetics,
53(6):770-777, 2021.

Ashraful Haque, Jessica Engel, Sarah A
Teichmann, and Tapio Loénnberg. A prac-
tical guide to single-cell rna-sequencing for
biomedical research and clinical applications.
Genome medicine, 9:1-12, 2017.

Fan Yang, Wenchuan Wang, Fang Wang,
Yuan Fang, Duyu Tang, Junzhou Huang, Hui
Lu, and Jianhua Yao. scbert as a large-scale
pretrained deep language model for cell type
annotation of single-cell rna-seq data. Nature
Machine Intelligence, 4(10):852-866, 2022.
Jingcheng Du, Peilin Jia, Yulin Dai, Cui Tao,
Zhongming Zhao, and Degui Zhi. Gene2vec:
distributed representation of genes based on
co-expression. BMC' genomics, 20:7-15, 2019.

21

[43]

[45]

[50]

[51]

Alec Radford, Jong Wook Kim, Chris Hal-
lacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell,
Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural lan-
guage supervision. In International confer-
ence on machine learning, pages 8748-8763.
PMLR, 2021.

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim,
Donghyeon Kim, Sunkyu Kim, Chan Ho So,
and Jaewoo Kang. Biobert: a pre-trained
biomedical language representation model for
biomedical text mining. Bioinformatics,
36(4):1234-1240, 2020.

Haotian Cui, Chloe Wang, Hassaan Maan,
Kuan Pang, Fengning Luo, Nan Duan, and
Bo Wang. scgpt: toward building a founda-
tion model for single-cell multi-omics using
generative ai. Nature Methods, pages 1-11,
2024.

Alexander Hermans, Lucas Beyer, and Bas-
tian Leibe. In defense of the triplet loss
for person re-identification. arXiv preprint
arXw:1708.07737, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain
Gelly, et al. An image is worth 16x16 words:
Transformers for image recognition at scale.
arXw preprint arXiv:2010.11929, 2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia
Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In
2009 IEEE conference on computer vision
and pattern recognition, pages 248-255. leee,
2009.

Jiahui Yu, Zirui Wang, Vijay Vasudevan,
Legg Yeung, Mojtaba Seyedhosseini, and
Yonghui Wu. Coca: Contrastive caption-
ers are image-text foundation models. arXiv
preprint arXiv:2205.01917, 2022.

Shekoufeh Gorgi Zadeh and Matthias
Schmid. Bias in cross-entropy-based training
of deep survival networks. IEEF transactions
on pattern analysis and machine intelligence,
43(9):3126-3137, 2020.

Arthur Liberzon, Chet Birger, Helga Thor-
valdsdottir, Mahmoud Ghandi, Jill P
Mesirov, and Pablo Tamayo. The molecu-
lar signatures database hallmark gene set



collection. Cell systems, 1(6):417-425, 2015.
Yan Wang, Wei-Lun Chao, Kilian Q Wein-
berger, and Laurens Van Der Maaten. Sim-
pleshot: Revisiting nearest-neighbor classifi-
cation for few-shot learning. arXiv preprint
arXiv:1911.04623, 2019.

Bradley Efron and Robert J Tibshirani. An
introduction to the bootstrap. Chapman and
Hall/CRC, 1994.

Frank Wilcoxon. Individual comparisons by
ranking methods. In Breakthroughs in statis-
tics: Methodology and distribution, pages
196-202. Springer, 1992.

Aatish Thennavan, Francisco Beca, Youli
Xia, Susana Garcia-Recio, Kimberly Allison,
Laura C Collins, M Tse Gary, Yunn-Yi Chen,
Stuart J Schnitt, Katherine A Hoadley, et al.
Molecular analysis of tcga breast cancer his-
tologic types. Cell genomics, 1(3), 2021.

[53]

[54]

[56] Justin  Guinney, Rodrigo Dienstmann,
Xin Wang, Aurélien De Reynies, Andreas
Schlicker, Charlotte Soneson, Laetitia

Marisa, Paul Roepman, Gift Nyamundanda,
Paolo Angelino, et al. The consensus molec-
ular subtypes of colorectal cancer. Nature
medicine, 21(11):1350-1356, 2015.

Kishore Papineni, Salim Roukos, Todd Ward,
and Wei-Jing Zhu. Bleu: a method for auto-
matic evaluation of machine translation. In
Proceedings of the 40th annual meeting of the
Association for Computational Linguistics,
pages 311-318, 2002.

Michael Denkowski and Alon Lavie. Meteor
1.3: Automatic metric for reliable optimiza-
tion and evaluation of machine translation
systems. In Proceedings of the sizth work-
shop on statistical machine translation, pages
85-91, 2011.

Chin-Yew Lin. Rouge: A package for auto-
matic evaluation of summaries. In Text
summarization branches out, pages 74-81,
2004.

[57]

4 Methods

4.1 Pretraining Dataset Curation

Data used for pretraining in this study were
totally obtained from a publicly available source,
the Cancer Genome Atlas Program (TCGA) [19],
in which we collected 9,640 cases (11,765 slides)
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of diagnostics formalin-fixed paraffin-embedded
(FFPE) H&E WSIs, 11,108 pathology reports
and 10,234 cases of bulk RNA-Seq data across
all 32 cancer types of TCGA. After quality
control, we curated a dataset with 8,440 WSI-
Report pairs, 8,965 WSI-RNA-Seq pairs and
8,764 Report-RNA-Seq pairs, resulting in 26,169
modality pairs, as shown in Figure lc. Given that
numerous downstream tasks, such as survival
analysis, were evaluated on TCGA data, we held
out some validation and test cases. For 9 cancer
datasets comprising over 400 cases, we adopted a
split ratio of 7:1:2 for train-validation-test folds.
For those cases involving multiple slides, we com-
bined their patches or features into a single case
for pretraining at the patient level. This ensured
slides belonging to one case were included within
the same fold, thereby preventing potential data
leakage. We also considered label stratification for
survival labels at patient-level, since we primarily
evaluated the performance of survival prediction
on TCGA data. Note that all cases without sur-
vival labels were used for pretraining. Details
of data splitting for these 9 cancer datasets are
provided in Extended Data Table A21. After
data partitioning, we curated 22,127 modality
pairs for contrastive learning, consisting of 7,083
WSI-Report pairs, 7,538 WSI-RNA-Seq pairs and
7,506 Report-RNA-Seq pairs. Among these, there
were 7,947 cases with all three modalities for
pretraining. For acquisition of high-quality data,
we conducted the subsequent pre-processing pro-
cedures for each modality.

WSI Pre-processing. To conduct slide- (or
patient-) level tasks on WSIs, our processing
pipeline involved tissue segmentation, patching,
and feature extraction (for pretraining aggrega-
tors and evaluation). For tissue segmentation,
we employed the CLAM library [12], which per-
formed binary thresholding on the saturation
channel of a downsampled RGB slide, converted
to the hue-saturation-value (HSV) color space.
The resulting segmentation mask was obtained
by filtering the contours based on their area. The
hyperparameters of segmentation are released on
our codebase. Furthermore, slides that were cor-
rupted and those containing a small proportion
of tissue region were excluded from this study. As
a result, we acquired 9,608 cases of 11,727 slides
for pretraining and evaluation.



To adhere to established practices of previous
works [12, 3, 4], we partitioned the segmented
tissue regions into 256 x 256 pixels patches at
20x-equivalent magnification without overlaps
and then resized all patches to 224 x 224 pixels
for feature extraction. Using pretrained patch
extractors that were kept frozen, we pre-extracted
embeddings for each patch and stored them for
subsequent evaluation purposes.

Report Pre-processing. For pathology reports,
we curated open-source texts from TCGA and
converted them from their original PDF format
to editable text format via Amazon Web Services
(AWS) Optical Character Recognition (OCR)
tools, resulting in 9,523 Reports. For quality con-
trol, we curated these reports via the powerful
language tool, GPT-4, with appropriate prompts
provided in Extended Data Table A22, and re-
checked them manually to ensure the unchanged
original intent. The statistical distribution of word
counts for reports is demonstrated in Figure le,
in which the majority of cases have word counts
below 500.

RNA-Seq Pre-processing. We accessed RNA-
Seq data of TCGA from cBioportal database,
which were preprocessed and normalized using
RSEM [38]. An inherent difficulty in gene expres-
sion modelling arises from the variations in
absolute magnitudes observed across different
sequencing protocols [39]. Therefore, we further
applied a common preprocessing technique loglp
transformation [40] for gene expression values.
Following previous works [41], Gene2Vec [42] con-
tributed to better representing the gene names by
enforcing that words with similar meanings are
assigned similar representations. Therefore, we
retained genes present in the Gene2Vec vocabu-
lary. In the end, we obtained 9,890 cases RNA-Seq
data, each consisting of genes with a length of
17,425.

4.2 Pretraining Framework

To utilize multimodal knowledge at the whole-
slide context for enhancing the pathology foun-
dation model, we propose a whole-slide pretrain-
ing paradigm consisting of two-stage pretraining,
as shown in Figure 2. In the first stage, we
aim to inject multimodal knowledge into the
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slide aggregator by contrastive learning, includ-
ing inter-modality contrastive learning (following
CLIP [43]) and inter-cancer contrastive learning.
In the second stage, to seamlessly propagate mul-
timodal knowledge at the slide-level context into
the patch extractor, we leverage the slide aggre-
gator pretrained in the first stage, serving as a
“Teacher” model, to supervise the pretraining of
the patch extractor, termed Self-Taught training.
In this way, multimodal knowledge of the whole-
slide context can be injected into the pathology
FM.
Stage 1 - Pretrain Slide Aggregator. In
this stage, we aim to pretrain a slide aggregator
that learns multimodal knowledge by contrastive
learning with other modalities. Note that the pre-
trained slide aggregator plays a role of “Teacher”
that propagates the learned knowledge into the
patch extractor at the next stage. These mod-
ules to be trained are highlighted in red boxes
in the Figure 2a, in which we pretrain a 2-layer
TransMIL [13] as the slide aggregator for WSIs,
a Bert-like text encoder (following BioBert-Base-
v1.2 [44]) for pathology reports, and a Performer
(following scBERT [41]) for RNA-Seq data.

Given these transformer-like encoders, we need
to tokenize raw data of every modality into token
embeddings before feeding them into their respec-
tive encoders. For pathology, we obtained non-
overlapping 224 x 224 patches as early mentioned,
and then for every patch, we used a pretrained
patch extractor, UNI [3], to extract patch features,
where a patch feature was regarded as a token
embedding for the slide aggregator. After gath-
ering 4,096 patch features for the i-th patient’s
WSIs, P; = {p™}M_,, we fed them into the slide
aggregator to integrate all patch features and got a
512-dimensional pathological [CLS] token embed-
ding P; as the slide-level representation, where
M is the number of patches and it was fixed
into 4,096. For cases where the number of patches
exceeds 4,096, a random selection of 4,096 patches
is made, while for cases with fewer than 4,096
patches, padding is applied using the mean value.
For those cases where one patient has more than
one WSI, we simply concatenated them together.
Note that all patch features were transformed into
512-dimensional features by a linear projection
before being forwarded into the aggregator.

For pathology reports, we adopted the text
encoder for randomly truncated 512 tokens and



outputted the report [CLS] token embedding T;.
For cases where the length of the text is less
than 512, the special token ’[pad]” was padded.
The RNA-Seq data was organized as a set of
2-tuple (g;,e;) comprising of the gene name g;
and its expression variable e;. Following previous
works [41, 45], to assure that genes with poten-
tial co-expression get close together, we employed
Gene2Vec [42] to generate 200-dimensional gene
embeddings for each gene name g;. Gene expres-
sion can be viewed as the manifestation or
presence of each gene, which has been well-
documented within a biological system. Therefore,
we applied the term-frequency-analysis method
used in previous works [41, 45] to discretize the
continuous expression variable e; through binning
technique. Subsequently, the discrete variable was
transformed into a 200-dimensional embedding,
which was then integrated into the final gene token
embedding g; by addition. Through forwarding
the gene encoder, we can get the gene [CLS] token
embedding G;. It is worth noting that encoder
outputs from report and gene modalities were
transformed into 512-dimensional features by a
linear projection for contrastive learning.

To optimize the model through pretraining,
we incorporate two objectives including inter-
modality contrastive learning and inter-cancer
contrastive learning. In the case of inter-modality
contrastive learning, given the [CLS| represen-
tation of each modality, every two modalities
can be paired together, which finally yielded
three combinations: WSI-report (P;,T;), WSI-
gene (P;,G;) and report-gene (T;,G;). During
pretraining between every modality pairs, a mini-
batch consisted of N samples, e.g., {(P;, T;)}¥Y,
for WSI-report. Contrastive learning imposes a
higher similarity in modality pairs from the same
sample. Take WSI-report pairs as an example, and
the loss function can be formulated as

r g: exp (P/T;/7)
P-T = —
i=1 ] 1eXP(PTTJ/T)
i exp T P;/7)
- 1exp(T P;/7T)

where 7 is a scale factor of the contrastive loss and
it was set by default following CLIP [43]. Similarly,
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we can get Lp_g and L1_¢ and finally combine
them by addition.

To alleviate the heterogeneity of various cancer
types, we utilized inherent cancer labels avail-
able in TCGA for the inter-cancer pretraining
objective. Specifically, [CLS] tokens of available
modalities (regardless of whether they involved
two or three modalities) would be concatenated
into a single anchor representation a;. Further-
more, positive and negative samples were obtained
within the mini-batch, and they were from the
same cancer and different cancers, respectively.
Similarly, they were constructed in the same way
by concatenating the [CLS] tokens from available
modalities, leading to a™ and a~ for positive and
negative samples, respectively. Subsequently, we
enforced a triplet loss Lipipes for them to bring
the samples of the same cancer closer than that of
the negative sample:

—d(a;,a”)+¢€,0)
2)
where at and a~ represent the farthest positive
samples and nearest negative samples within a
mini-batch, respectively, following the hard sam-
ple mining technique [46]. Here we used I3 distance
for function d(-) and € is the margin which was set
0.3 based on smoother stability of loss degradation
in the training set. Through these two pretraining
objectives, as a result, we can get a well-trained
slide aggregator that absorbed multimodal knowl-
edge, which would be the "Teacher’ for the patch
extractor at the next stage.
Stage 2 - Pretrain Patch Extractor. Upon
finishing the first stage of pretraining, we can
obtain a slide aggregator incorporating mul-
timodal knowledge by being pretrained with
multimodal data. In this stage, we leverage
the pretrained slide aggregator as “Teacher” to
seamlessly propagate multimodal knowledge into
pathological patch extractor (ViT-L [47]), as
shown in Figure 2b, which is termed Self-Taught
training. Specifically, for each WSI, we gathered
their patch features P; = {p"}M_, of the i-th
WSI and fed them into the aggregator pretrained
in the previous stage, where M refers to the num-
ber of patches of this WSI. Following the setting
in the previous stage, M was fixed as 4,096. In
this way, every patch can be re-embedded into new

Ctriplet = A7



features P; = {p™}M_, incorporating multimodal

knowledge. With these re-embedded features as
the objective guidance, we can pretrain a patch
extractor by enforcing the extracted patch feature
to get as close as possible to the ones re-embedded
by the well-trained aggregator. To achieve this,
for each patch, we can query its corresponding
re-embedded feature p;* encoded by the aggrega-
tor and further tuned the extractor with a loss
function that minimizes the discrepancy between
patch features encoded by the patch extractor and
the corresponding re-embedded features incorpo-
rating multimodal knowledge:

M
min Y [|£(p}") — B 3)

where f(-) is a linear projection for adjusting
the dimension of features and it transformed
them into 512-dimensional features. Additionally,
to avoid the catastrophic forgetting problem, a
siamese structure is employed for the patch extrac-
tor consisting of two identical branches, where the
parameters of one branch are updated using gra-
dient descent, while the parameters of the other
branch are updated using an Exponential Moving
Average (EMA) of the parameters from the previ-
ous branch, without any gradient updates. After-
ward, we enforced a similarity constraint between
the patch features pj* extracted by the branch
with gradient updates and those p;' embedded
by the branch with EMA updates. In the end, we
combined two objectives into a loss function for
pretraining the patch extractor:

M;
min y A+ || £(7) =Dl + (1= N) - [[p]" =Bl

(4)
where A is a balancing coefficient and it was set 0.6
based on smoother stability of loss degradation.
By doing this, the patch extractor was enhanced
by multimodal knowledge at the whole-slide con-
text.

4.3 Downstream Tasks

Comparisons and Baselines. To investigate
the benefit of enhancing the patch extractor by
incorporating multimodal knowledge at the slide
level, we compared mSTAR against one general
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baseline and three SOTA pretrained extractors
commonly used in the CPath community: (1)
ResNet50 [22] pretrained on ImageNet-1K [48],
a commonly used baseline in many slide-level
tasks [13, 9]. (2) PLIP [2], a vision-language (V-L)
architecture (CLIP [43]) pretrained on OpenPath
consisting of over 200k pathological patch-caption
pairs. (3) CONCH [4], a V-L CoCa [49] frame-
work with an additional generative loss pretrained
on over 1.17 million pathological patch—caption
pairs. (4) UNI [3], a pure vision patch extractor
pretrained on more than 100 million patches from
over 100k WSIs. Through pre-extracted patch
features via these encoders, we can get 1024-
dimensional (1024-d) embeddings for ResNet50,
UNI, and mSTAR, and 512-dimensional (512-d)
embeddings for PLIP and CONCH.

Unless otherwise specified, we obtained
slide-level predictions by training the widely
used attention-based multiple-instance learning
(ABMIL) [11], a MIL aggregator that integrates
all patch features of a WSI into the slide-level
representation according to attention scores. We
also employed TransMIL [13] as a MIL backbone,
a transformer-like MIL architecture with linear
time complexity, since we leveraged TransMIL
serving a “Teacher” to propagate multimodal
knowledge into the “Student” patch extrac-
tor through self-taught training in this work.
We additionally presented results of mSTAR
equipped with the pretrained aggregator, which
was contrastively pretrained features embed-
ded by our pretrained patch extractor mSTAR,
resulting in the advanced version of the proposed
approach termed mSTAR+.

In the experiments of multimodal fusion, we
employed 4 existing SOTA multimodal integra-
tion models, MCAT [8], Porpoise [24], CMTA [10]
and MOTCat [9]. For slide-level Zero- or Few-
shot Classification that requires textual class
prototypes, we considered the pretrained model
as a good zero- or few-shot learner. As a result,
following the paradigm of CLIP, we compared
against those approaches that are equipped with
the text encoder by utilizing the pretrained text
encoder as a good classification head, including
PLIP and CONCH. For those visual-only FMs,
i.e., R50 and UNI, we employed the pretrained
text encoder of mSTAR to construct class pro-
totypes. For the pathological report generation,



we trained a recent model HistGen [34] based on
pathological features from various FMs.

Slide-level Unimodal and Multimodal
Tasks. For these tasks, we follow the con-
ventional two-stage MIL paradigm comprising
pre-extraction of patch features as instances and
the training of a MIL aggregator that integrates
patch features (or instances) into a single slide-
level (or bag) feature. The aggregator took all
patch features of a WSI as an input and mapped
them into a hidden embedding as a single slide-
level representation. Subsequently, the slide-level
representation was passed through a fully con-
nected classifier head, resulting in logits. Lastly,
based on logits, we performed two types of slide-
level tasks including classification supervised by
cross-entropy loss with slide labels , and survival
prediction (an ordinal regression task) supervised
by NLL loss [50] with survival labels (Overall Sur-
vival in month), ranging from various diagnosis,
treatment and prognosis tasks.

Classification. We  performed Breast
metastasis detection on CAMELYON (CAME-
LYON16+417) [14, 15], Prostate ISUP grading
on PANDA [16], ovarian cancer subtyping
on UBC-OCEAN [17, 18], BRCA subtyping
on TCGA BRCA [19], NSCLC subtyping on
TCGA NSCLC [19] and RCC subtyping on
RCC-DHMC [20], resulting in 6 diverse tasks.
For molecular predition, we also conducted
evaluations on BCNB-ER, BCNB-HER2, BCNB-
PR [21], TCGA BRCA, TCGA CRC and TCGA
GBMLGG datasets. For all classification tasks,
we label-stratified these datasets into 7:1:2
train-validation-test folds unless explicitly stated
otherwise. For datasets that included TCGA
data used in pretraining, we put the pretraining
cases into the training split, while ensuring that
the validation and test sets were held out from
pretraining sources. Following the setting of pre-
vious works [4, 3], we treated one slide as one
case separately. The model performing best in
the validation split was chosen to be evaluated
on the test set with 1000-times bootstrapping for
95% confidence interval (CI).

For all MIL backbones, we used the same
hyper-parameters set for mSTAR and the compet-
ing FMs, in which the hidden dimensions are 512
and dropout keeps p = 0.25 after each interme-
diate layer in the network for regularization. We

26

trained each model for 30 epochs on the train-
ing split by an Adam optimizer of the learning
rate of 2 x 107* along with a cosine learning
rate scheduler. The full set of hyperparameters is
summarized in Extended Data Table A23.

Survival Prediction. For the survival predic-
tion task, we performed evaluations on 9 TCGA
datasets with 7:3 train-test splits, where each
dataset consisted of more than 400 cases and the
test set was merged from validation and test folds
of pretraining splits and it was totally held out
from pretraining data. In particular, CRC com-
bined COAD and READ datasets and GBMLGG
consisted of GBM and LGG. Following the con-
ventional setting [8, 9], we concatenate features
of all slides belonging to a single patient as one
case for the patient-level prediction. To provide
robust statistical performances, we conducted a
1000 times bootstrapping evaluation on the test
set for 95% CI using the model performing best
on the whole test set.

Regarding the hyperparameters of MIL back-
bones, we set the hidden dimension as 512 and
dropout p = 0.25. In this task, we train each
MIL model for 30 epochs optimized by Adam
with the learning rate of 2 x 10~ along with a
cosine learning rate scheduler. For all optimization
hyperparameters, refer to Extended Data Table
A24.

The pretraining approach based on contrastive
learning demonstrates promise in alleviating the
heterogeneity of different modalities, thereby con-
tributing to multimodal data integration. To ver-
ify this potential, in addition to vision-only mod-
els, we further evaluate multimodal fusion models
for this task. Given the off-the-shelf multimodal
fusion approaches that integrated WSIs and RNA-
Seq data for survival prediction, we replaced their
pathological features with ones embedded by pre-
trained extractors. It is worth highlighting that
the training and evaluation of multimodal mod-
els followed the same splits as that of vision-only
models, and we simply discarded those cases with-
out paired RNA-Seq data.

For the aforementioned four existing mul-
timodal integration models, we followed their
default hyperparameters for these models, and
detailed hyperparameters for each model are
presented in Extended Data Table A25-A27.
For Porpoise, the input length of RNA-Seq varies
across different cancer datasets in TCGA and



the hidden dimension for RNA-Seq is fixed as
25, while the hidden dimension of pathological
features was first transformed into 512 and then
256. Both modality branches adopted the dropout
technique with p 0.1. Lastly, features from
two modalities were fused into a 256-dimensional
slide-level feature. For MCAT and MOTCat, the
hidden dimension of features was 256 for both
modalities and dropout was 0.25 for regulariza-
tion. Subsequently, features from two modalities
were concatenated and integrated into a 256-
dimensional slide-level representation. Similarly,
CMTA followed the same hyperparameters except
the hidden dimension of RNA-Seq which first
became 1024 and then 256. For RNA-Seq data
of MCAT, CMTA and MOTCat, embeddings
were defined based on 6 functional categories
according to [51] provided in MCAT by default,
including 1) Tumor Supression, 2) Oncogenesis,
3) Protein Kinases, 4) Cellular Differentiation,
5) Transcription, and 6) Cytokines and Growth.
More training hyperparameters are provided in
Extended Data Table A28.

Few-shot Slide Classification. We performed
evaluation on the same test set of each dataset
as that of Slide Classification. Since our model
was pretrained on TCGA data, we excluded
classification datasets involving TCGA data. In
this task, the pretrained model can be consid-
ered a good few-shot learner, which allows more
label-efficient tasks. We proposed a new method
utilizing pretrained patch extractors and the pre-
trained text encoder inspired by a non-parametric
few-shot approach for WSIs, MI-SimpleShot [3]
to evaluate the capability of few-shot learning for
pretrained models , termed as MI-FewShot. Note
that test sets were excluded from pretraining
sources. Within the test set, we need to construct
some episodes to evaluate the few-shot capabil-
ity, including establishing the support set and
query set. Due to the limited number of classes,
we followed the same configuration as that of
CONCH for the support set, in which evaluated
classes were kept the same and the number of
sampled slides k per class (i.e., “k-shot”) was
varying for training from k& = 1,2,4,8,.... To
ensure the low-sample scenarios, the maximum
limit for sampled examples per class was set at
either 256 or the maximum power of 2 that does
not exceed the number of samples in the smallest
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class. These sampled slides were used for creating
slide-level class prototypes of the support set. The
remaining samples, excluding those included in
the support set, were considered as the query set
for this episode. Due to the small support sizes,
we randomly sampled k slides (“shot”) per class
with 5 repeated experiments (called “episodes”)
and reported the averaged results with error bars
following the previous work [4].

Based on the support set, we need to con-
struct the class prototypes using the sampled k
slides per class. To achieve this, considering the
pretrained text encoder is a good classifier, we
first utilized it to establish textual prototypes of
every class. To this end, we constructed a pool
of prompt templates (see Extended Data Table
A30) and ensembled all the prompts within a
class by using the average text embedding as
the class prototype. After obtaining textual class
prototypes, following SimpleShot [52], we can use
multiple patches to establish slide class prototypes
based on k slides for each class. Specifically, every
patch feature can be obtained by the pretrained
extractor from k slides per class, followed by L2
normalization. Then based on cosine-similarity
scores between the normalized patch feature and
its corresponding textual prototypes associated
with a given class, the average embedding of top-
K patch features was used to represent this class.
Subsequently, to obtain slide-level prediction for
every query slide, we first embedded every patch
of the query slide into a low-dimensional feature
representation using the pretrained extractor,
and then every L2 normalized patch feature was
compared to each slide class prototype described
above to calculate the cosine similarity score.
As a result, the slide-level decision of this query
was made by majority voting of the top-K patch
predictions.

Zero-shot Slide Classification. We adopted
an evaluation scheme similar to that of Few-shot
Slide Classification to assess the ability of zero-
shot learning. For all pretrained extractors, we
employed a non-parametric MI-Zero [25] that
does not rely on parametric training. The ensem-
bling prompt of templates (the same as that of
few-shot classification) was used as the textual
classification, which was utilized to compute the
cosine similarity score with every patch feature.



In the end, MI-Zero made the slide-level deci-
sion for every slide in the test set based on the
majority voting of top-K scores. In addition, we
conducted 1000 times bootstrapping on the test
set for 95% confidence interval (CI). Other train-
ing configurations were consistent with those of
Few-shot Slide Classification as described earlier.

Pathological Report Generation. We per-
formed the assessment for this task on TCGA
pathological datasets. Since report generation
needs more samples to ensure robust generated
results, we collected all WSIs and pathology
reports used in pretraining as the training set to
finetune the specific model of report generation,
our prior work HistGen [34]. The held-out data
from pretraining sources were used as validation
and test sets. Given patients’ pathology fea-
tures from WSIs of each FM, HistGen is able to
produce a sequence of words. Specifically, given
extracted pathological features from the foun-
dation model, the encoder-decoder architecture
of HistGen would encode them into the latent
features for report decoding. Subsequently, these
features are utilized by the text decoder to gen-
erate the report. The quality of the generated
report is directly influenced by the quality of
the pathological features encoded by each FM.
For all optimization hyperparameters, refer to
Extended Data Table A29.

Statistical Analysis. Unless otherwise specified,
we employ non-parametric bootstrapping with
1,000 bootstrap [53] replicates to estimate 95%
confidence intervals for all experiments. To assess
the observed differences in performance between
the two models, we utilize a one-sided Wilcoxon
signed-rank test [54] for statistical significance,
following the previous work [5].

Evaluation Datasets

CAMELYON (14, 15] for Breast Metastasis
Detection (2 classes). This dataset comprises
399 slides from the Cancer Metastases in Lymph
Nodes Challenge 2016 (CAMELYON16) [14]
and 500 slides from the CAMELYON17 chal-
lenge [15], resulting in 899 slides for the breast
metastasis detection of two classes (“normal” v.s.
“metastasis”). After removing a corrupted slide,
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we obtained a total of 898 WSIs (557 normal,
341 metastasis). For training and evaluation,
we employed the label-stratified 7:1:2 train-
validation-test splits (630:91:180 slides).
PANDA [16] for Prostate ISUP grading
(6 classes). Derived from the PANDA chal-
lenge [16], the ISUP (International Society of
Urological Pathology) grading task includes a
collection of 10,616 prostate cancer core nee-
dle biopsies for prostate cancer evaluation of 6
grades (also known as “classes”). After tissue
segmentation, slides with a low tumor proportion
were excluded, which resulted in 10,202 slides.
For training and evaluation, we label-stratified
PANDA into 7:1:2 train—validation—test folds
(7,143:1,019:2,040 slides).

UBC-OCEAN [17, 18] for Ovarian Can-
cer Subtyping (5 classes). The UBC-OCEAN
(University of British Columbia - Ovarian Can-
cer subtypE clAssification and outlier detectioN)
dataset consists of 538 slides, which aims to
classify ovarian cancer subtypes into 5 cate-
gories. After performing tissue segmentation, a
total of 527 slides were acquired (98 CC, 122
EC, 221 HGSC, 43 LGSC and 43 MC). The
class information is presented in Extend Data
Table A33. For training and evaluation, we label-
stratified the dataset into train—validation-test
folds (369:52:106 slides).

TCGA-BRCA [19]for BRCA Subtyping (2
classes). The TCGA BRCA (Breast Invasive
Carcinoma) dataset included BRCA H&E diag-
nostic histopathology WSIs from TCGA. This
dataset encompassed cases of primary IDC (Inva-
sive Ductal Carcinoma) and ILC (Invasive Lobular
Carcinoma). After excluding slides with inade-
quate proportional tumor, a total of 985 slides
were gathered, comprising 787 IDC and 198 ILC
slides. Following the splits for pretraining, which
approximately yielded 7:1:2 train-validation-test
folds (656:95:234 slides), we ensure validation and
test sets held out from pretraining sources.
TCGA-NSCLC [19] for NSCLC Subtyping
(2 classes). The TCGA NSCLC (Non-Small
Cell Lung Cancer) dataset comprised NSCLC
H&E diagnostic slides from TCGA, including
cases of primary lung adenocarcinoma (LUAD)
and lung squamous cell carcinoma (LUSC). After
tissue segmentation, a total of 1,053 slides were
obtained, consisting of 541 LUAD and 512 LUSC
slides. Similarly, we used the same pretraining



splits train-validation-test of an approximate
ratio 7:1:2 (664:100:289 slides) to avoid data con-
tamination.

RCC-DHMC [20] for RCC Subtyping (5
classes). Renal cell carcinoma (RCC) subtyping
in this study involved WSIs of Benign (29 slides),
Renal Oncocytoma (ROCY, 66 slides), Chro-
mophobe RCC (CHRCC, 23 slides), Clear Cell
RCC (CCRCC, 344 slides), and Papillary RCC
(PRCC, 101 slides) obtained from the Dartmouth-
Hitchcock Medical Center (DHMC). For training
and evaluation, we label-stratified the dataset
into train—validation-test folds (392:56:115 slides).
BCNB datasets [21] for ER (2 classes), PR
(2 classes) and HER2 prediciton (2 classes).
The Early Breast Cancer Core-Needle Biopsy
(BCNB) WSI dataset, encompasses core-needle
biopsy WSIs obtained from patients diagnosed
with early breast cancer. The official provides
data from 1058 patients, while we collected 1038
WSIs paired with ER, PR, HER2 status after
tissue extraction. For training and evaluation, the
train-validation-test cohort is label-stratified in
a ratio of 7:1:2, resulting in training-validation-
testing of 727:103:208 slides.

TCGA-BRCA for Molecular Predic-
tion [55] (5 classes). This dataset is derived
from the TCGA BRCA dataset, consisting of
Basal (94 slides), HER2 (56 slides), LumA (228
slides), LumB (127 slides) and Normal (29 slides)
classes. For training and evaluation, we label-
stratified the dataset into train—validation-test
cohorts (381:51:102 slides).

TCGA-CRC for Molecular Prediction [56]
(4 classes). The dataset used in this study
is derived from the TCGA CRC (Colon Ade-
nocarcinoma and Rectum Adenocarcinoma)
dataset, which includes the Colon Adenocarci-
noma (COAD) and Rectum Adenocarcinoma
(READ) datasets. It comprises four consensus
molecular subtypes (CMSs). To facilitate training
and evaluation, we stratified the dataset based
on labels into train-validation-test cohorts with
proportions of 344:49:99 slides, respectively.
TCGA-GBMLGG for Glioma IDH1 Muta-
tion Prediction (2 classes). This dataset is
specifically curated for predicting glioma IDH1
mutation. It consists of 804 FFPE&E-stained
WSIs from the TCGA database, with a focus
on the TCGA-GBM (Glioblastoma Multiforme)
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and TCGA-LGG (Brain Lower Grade Glioma)
subsets. It is important to note that cases with-
out reported IDH mutation status have been
excluded from the dataset. The slides in this
dataset are categorized into two classes: IDH-1
Wildtype (600 slides) and IDH-1 Mutant (204
slides). To facilitate training and evaluation, the
train-validation-test cohort has been carefully
stratified based on labels, with a ratio of 7:1:2.
Consequently, there are 563 slides for training, 80
slides for validation, and 161 slides for testing.

9 TCGA Datasets for Unimodal and Mul-
timodal Survival Analysis. In pretraining
splits, we employed case- and label-stratified 7:1:2
training-validation-test splits for 9 TCGA cancer
datasets of over 400 cases. We evaluated the capa-
bility of survival analysis on the same validation
and test sets totally excluded from pretraining
data. More information about the 9 TCGA can-
cer datasets were provided in Extended Data
Table A21. For multimodal survival analysis, we
employed the same splits and simply skip the
cases without paired RNA-Seq data.

TCGA Datasets for Pathological Report
Generation. During pretraining, we employed
training-validation-test splits for some cancer
datasets of over 400 cases and other data were put
into pretraining materials. Following this setting,
we considered all pretraining data containing
pathology reports as the training set, and the
held-out validation-test sets were re-used, result-
ing in 7073:452:934 cases for train-validation-test
splits.

Evaluation Metrics

For classification tasks, Macro-AUC and its 95%
confidence interval (CI) are reported considering
alleviating the impact of unbalanced data, which
doesn’t depend on the selection of the decision
threshold and is not affected by the sample ratio
of classes. For survival prediction tasks, we report
the commonly used Concordance Index (C-Index)
and its 95% CI, which is defined as the probability
that two randomly selected individuals will have
risk predictions correctly ordered. For few-shot
and zero-shot classification, we also reported the
same metric as the ones in classification tasks.
In pathological report generation, in line with
our prior studies HistGen [34], we report vari-
ous metrics, BLEUQK [57], METEOR [58] and



ROUGE-L [59], to assess the accuracy of pre-
dicted captions against the ground-truth captions
from different perspectives. BLEUQK measures
the similarity between machine-generated text
and ground truth by comparing the presence
and frequency of n-grams. METEOR is a metric
that evaluates precision and recall by matching
unigrams while also factoring in synonyms and
word variations between the original text and the
reference. On the other hand, ROUGE-L mea-
sures the similarity in n-gram overlap between
the generated texts and the ground truth.

Computing Software and Hardware. We con-
ducted all experiments and analyses in this study
using Python (v3.11.5) and PyTorch (v2.2.1,
CUDA 11.7) (https://pytorch.org) unless stated
otherwise, and these can be reproduced with open-
source libraries as described below. To pretrain
aggregator, the implementaion of the text encoder
pretrained on PubMed was maintained by the
codebase (https://github.com/dmis-lab/biobert)
and its pretrained weights can be assessed in
the open-source timm library from Hugging

Face  (https://huggingface.co). For extrac-
tor pretraining, we initialize the backbone
with the pretrained weights of UNI code-

base (https://github.com/mahmoodlab/uni).
OpenSlide  (v3.4.1) and  openslide-python
(v1.3.1) were utilized to support the pro-
cessing of WSIs in conjunction with CLAM
(https://github.com/mahmoodlab/CLAM).

Implementations of other visual pretrained
encoders compared in the study can be
accessed through the following links: ResNet-
50  pretrained on  ImageNet-1K  (https:
//github.com/mahmoodlab/CLAM), PLIP

(https://github.com/PathologyFoundation/plip)
and CONCH (https://github.com/mahmoodlab/
CONCH). Implementations of zero-shot learn-
ing for WSIs were provided in MI-Zero
(https://github.com/mahmoodlab/MI-Zero). For
training MIL models for downstream tasks, we
adapted the code of ABMIL from the CLAM code-
base (https://github.com/mahmoodlab/CLAM)
and TransMIL from its source codebase
(https://github.com/szc19990412 /TransMIL/

tree/main). For multimodal survival predic-
tion, we wused the off-the-shelf multimodal
fusion models: MCAT (https://github.com/

30

mahmoodlab/MCAT), Porpoise (https://github.
com/mahmoodlab/PORPOISE), MOTCat
(https://github.com/Innse/MOT Cat) and CMTA
(https://github.com/FT-ZHOU-ZZZ7Z/CMTA).
For pathological report generation, HistGen
(https://github.com/dddavid4real /HistGen)  is
applied. We used 4 x 80 GB NVIDIA H800 GPUs
(graphics processing unit) for pretraining aggre-
gator and a single 80 GB NVIDIA H800 GPU for
pretraining extractor. These GPUs were set up
for multi-GPU, multi-node training, employing
distributed data-parallel (DDP) techniques. All
other experiments for downstream tasks were
conducted on single 24 GB NVIDIA 3090 GPUs
or single 80 GB H800 GPU.

Data availability. This study incorporates a
total of TCGA [19] data across 32 cancers includ-
ing WSIs (https://portal.gdc.cancer.gov/) and
their reports (https://github.com/dddavid4real/
HistGen). RNASeq data are collected from cBio-
Portal (https://www.cbioportal.org/). Extra data
for evaluation are as follows: Camelyonl6&17
(https://camelyon16.grand-challenge.org/Data/),
PANDA (https://www.kaggle.com/c/
prostate-cancer-grade-assessment/data), UBC-
OCEAN (https://www.kaggle.com/competitions/
UBC-OCEAN/data), BCNB  (https://benb.
grand-challenge.org/) and RCC-DHMC
(https://bmirds.github.io/KidneyCancer/).

Code availability. The code and weights of
mSTAR will be released in the codebase upon
paper acceptance.
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TCGA-D1-A179

7

Doctor

UNI

Doctor

mmSTAR
(Ours)

UNI

Slide Disposition:

Diagnosis:

A. Uterus:

- Hysterectomy

- High-grade serous carcinoma identified

- Tumor information: Mass measuring 70 x 41 x 0.4 cm, circumferentially
involving the endometrial cavity

- Tumor invasion: 0.4 cm into the myometrium
- Total myometrial thickness: 16 cm

- No involvement of the endocervix

- Lymphovascular space invasion identified

- Negative margins for tumor

B. Lymph Nodes (Right and Left Para-aortic lymphadenectomy):
- Multiple lymph nodes (6 out of 9) positive for metastatic carcinoma
consistent with endometrial primary

C. Ovary and Fallopian Tube (Right Salpingo-oophorectomy):
- High-grade serous carcinoma forming

Diagnosis:

A. Uterus, bilateral ovaries, and fallopian tubes:

- Hysterectomy and bilateral salpingo-oophorectomy

- FIGO Grade Il of Il endometrial adenocarcinoma, endometrioid type
- Tumor information: Mass measuring 28 x 25 x 22 cm, located in the anterior
uterine wall

- Tumor invasion: 2 ¢m into the myometrium

- Total myometrial thickness: 18 cm

- No involvement of the endocervix

- No lymphovascular space invasion identified

- Negative margins for tumor

- Bilateral ovaries and fallopian tubes are negative for tumor

Tissue Description:

-A1,A2, A3, A4, A5, AB, A7, A8, A9, A10, J1, K1, L1, M1, N1

- B1, B2, B3, B4, B5, B6, B7, B8, B9, B10, B11, B12, B13, B14, B15
- C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11, C12

- D1, D2, D3, D4, D5, D6, D7, D8, D9, D10, D11

-E1,E2, E3, E4

-F1

-G1,G2

- H1, H2, H3, H4

-1, 12,13

Uterus, right ovary (20 x 10 x 11 cm) with a 90 cm segment of right fallopian
tube, and left ovary (20 x 10 x 08 cm) with a 20

(a) TCG

Specimens:

A. Uterus, cervix, bilateral tubes, and ovaries
B. Left pelvic lymph nodes

C. Left pelvic lymph nodes

D. Left pelvic lymph nodes

E. Left pelvic lymph nodes

F. Left pelvic lymph nodes

Diagnosis

A. Uterus, cervix, bilateral tubes, and ovaries

- Endometrial adenocarcinoma, endometrioid type

- FIGO grade 3

- Nuclear grade 3

- Solid growth pattern

- Myometrial invasion is identified.

- The extent of invasion is confined to the endometrium.
- Cervix is present.

- The cervix is confined to the endometrium.

CONCH

Primary Site: Cervix
Diagnosis: Uterine cervix biopsy
- Poorly differentiated and invasive squamous cell carcinoma

PLIP

Final Diagnosis:

Part 1: Kidney Left Radical Nephrectomy:

A. Renal cell carcinoma, conventional clear cell type
- Fuhrman's nuclear grade: 3 out of 4

- Size: 4 cm in greatest dimension

B. The neoplasm is confined within the renal capsule.
C. No invasion of the renal vein is identified.

D. Renal vein is identified.

E. No evidence of angiolymphatic invasion is identified.
F. All surgical margins are free of tumor.

G. Non-neoplastic kidney is unremarkable.

H. No evidence of adrenal gland is identified.
Pathologic Stage: PT1b Nx Mx

R50

A-D1-A179

Medical Record Number: N/A

History and Clinical Diagnosis: Endometrial adenocarcinoma, Grade 1
Postoperative Diagnosis: Pending pathology examination

Specimens Received:

A. Uterus, cervix, bilateral tubes, and ovaries

B. Left pelvic lymph node

C. Left aortic lymph node

D. Right pelvic lymph node

E. Right aortic lymph node

Diagnosis:

A. Uterus, cervix, bilateral tubes, and ovaries:

- Endometrial adenocarcinoma

- Operative Procedure: Total abdominal hysterectomy and bilateral salpingo-
oophorectomy (TAH-BSO) with staging

- Histologic Type: Endometrioid

- Histologic Grade: FIGO Grade 1

- Nuclear Grade: 2

- Tumor Size: 35 cm

- Extent of Invasion: Less than 50% of myometrium, 1 mm invasion, 18 mm myometrial
thickness

- Lymphovascular invasion:

Specimens Submitted:

Uterus

Cervix

Bilateral fallopian tubes

Ovaries

Left external iliac lymph nodes
Left obturator lymph nodes

Left obturator lymph nodes

Left obturator lymph nodes

. Left obturator lymph nodes

10. Left obturator lymph nodes

11. Left common iliac lymph nodes
12. Right common iliac lymph nodes
13. Left common iliac lymph nodes

CENOOE N~

CONCH

abdomen.

The submitted specimens include the uterus, cervix, bilateral fallopian tubes,
ovaries, and several lymph nodes from different regions of the pelvis and

Client History/Clinical Diagnosis: Endometrial cancer
Postoperative Diagnosis: Pending pathology examination
Specimens Received:

A. Uterus, cervix, bilateral tubes, and ovaries

B. Left pelvic lymph node

C. Right pelvic lymph node

D. Left pelvic lymph node

E. Left pelvic lymph node

F. Uterus, cervix, tubes, and ovaries

Diagnosis:

A. Uterus, cervix, bilateral tubes, and ovaries:

- Endometrial adenocarcinoma, endometrioid type, FIGO grade |
- Tumor confined to the uterine fundus

- Tumor size: 50 x 30 x 25 cm

- No myometrial invasion identified

- The tumor invades the myometrium to a depth of

Specimens:

A. Right pelvic lymph nodes

B. Left pelvic lymph nodes

C. Prostate

Gross Description:

A. Right pelvic lymph nodes:

- Received fresh and labeled with the patient's identification.

- Multiple fragments of fatty tissue measuring 06 x 06 x 05 cm.

- The specimen is bisected and entirely submitted in a single cassette.
B. Right pelvic lymph nodes:

- Received fresh and labeled with the patient's identification.

- No further information is provided.

C. Prostate:

- No specific information is provided regarding the gross description.

PLIP

Page 1: Examination and Macroscopic Description

Histopathological Examination:

Material: Multiple organ resection - uterus, cervix, tubes, and ovaries.

Expected time of examination: Up to 8 working days.

Clinical Diagnosis:

Macroscopic Description:

- A segment of the large intestine measuring [unspecified] cm in length.

- Omentum tissue sized 12 x 8 x 5 cm in thickness.

- The omentum sized 12 x 10 x 10 cm in the mucosa.

- The lesion surrounds 100% of the intestine circumference and narrows its lumen.
- The endometrial cavity measures 12 x 11 cm in the lower uterine segment, located 12
cm from the

Final Diagnosis:

Part 1: Kidney Left Radical Nephrectomy:

A. Renal cell carcinoma, conventional clear cell type

- Fuhrman's nuclear grade: 3 out of 4

- Size: 4 cm in greatest dimension

B. The neoplasm is confined within the renal capsule.
C. No invasion of the renal vein is identified.

D. Renal vein invasion is identified.

E. No evidence of angiolymphatic invasion is identified.
F. All surgical margins are free of tumor.

G. Non-neoplastic kidney is unremarkable.

H. No evidence of adrenal gland involvement is identified.
Pathologic Stage: PT1b Nx Mx

R50

(b) TCGA-BS-A0V6
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Sample Information

Sample Type: Tumor

Sample Preparation: Fresh frozen

Site of Primary: Uterine

Site of Tissue: Cervix

Year of Sample Collection: Unknown

Age at Sample Collection: Unknown years
Days to Procedure Date: Unknown

Days to Diagnosis: Unknown

Pathological Information:

Type of Procedure: Surgical resection
Site of Primary Histology: Uterus

Bilateral Disease: Unknown

Tumor Size: 55 cm

Histology: Endometrioid adenocarcinoma NOS
Grade/Differentiation: Il

Pathological T: T1b

Sample Information:

Sample Type: Tumor

Sample Preparation: Fresh frozen

Site of Primary: Uterine

Site of Tissue: Endometrial mass

Year of Sample Collection: Unknown

Age at Sample Collection: Unknown years
Sample Comments: None

Days to Procedure Date: 0

Days to Diagnosis: 9

Pathological Information:

Type of Procedure: Surgical resection
Site of Primary Histology: Endometrium
Bilateral Disease: Unknown

Tumor Size: Unknown

Histology: Endometrioid adenocarcinoma NOS

TCGA-DF-A2L0

Grade/Differentiation: Il mmSTAR Eﬁ:ll:;?%?a'\\/‘g NX

Pl e (Ours) Histology Comments' Unknown
Pathological N: Unknown (Information not available regarding the number of nodes

sampled) Additional Information

Number of Nodes Positive: 17 Sample Type: Bufty =

Clinical M: MO Year of Sample Collection: Unknown

Age at Sample Collection: Unknown years
Days to Procedure Date: Unknown
Days to Diagnosis: Unknown

Histology Comments: Information not available

Sample Information:

Sample Type: Tumor Specimens Submitted:
Di is: Squamous cell i , not otherwise specified (NOS) 1. Uterus
Year of Sample Collection: Unknown/not specified 2. Cervix

Age at Sample Collection: Unknown/not specified years 3. Bilateral fallopian tubes
Days to Procedure Date: Unknown/not specified 4. Bilateral ovaries

Days to Diagnosis: Unknown/not specified 5. Right external iliac lymph nodes
Pathological Information 6. Left obturator lymph nodes
Type of Procedure: Resection 7. Right hypogastric lymph nodes
Site of Tissue/Primary Histology: Uterus 8. Right obturator lymph nodes

Tumor Size: 3 cm 9. Right hypogastric lymph nodes
Histology: Endometrioid adenocarcinoma NOS 10. Right hypogastric lymph nodes

Grade/Differentiation: Il 11. Right hypogastric lymph nodes
Pathological T: T3 ight hypog lympl

12. Right hypogastric lymph nodes

Pathological N: Unknown/not specified CONCH 13. Right hypogastric lymph nodes
WB Clinical M: MO 14. Right external iliac lymph nodes
Histology Comments: None provided 15. Right obturator lymph nodes
UNI Additional Information:

Sample Type: Buffy

Year of Sample Collection: Unknown/not specified

Age at Sample Collection: Unknown/not specified years
Days to Procedure Date: Unknown/not specified

Days to Diagnosis: Unknown/not specified

Final Diagnosis:

Part 1: Kidney Left Radical Nephrectomy:

A. Renal cell carcinoma, conventional clear cell type
- Fuhrman's nuclear grade: 3 out of 4

- Size: 4 cm in greatest dimension

B. The neoplasm is confined within the renal capsule.
C. No invasion of the renal vein is identified.

Primary Site: Cervix D. Renal vein invasion is identified.
Histopathology Findings: E. No evidence of angi ic invasion is i
Uterine cervix biopsy ng F. All surgical margins are free of tumor.
1gr Diagnosis: Poorly differentiated and invasive squamous cell carcinoma G. Non-neoplastic kidney is unremarkable.
R50 H. No evidence of adrenal gland involvement is identified.
PLIP Pathologic Stage: PT1b Nx Mx

(¢) TCGA-DF-A2L0

Fig. Al: Pathology Reports Generation for several cases.

Table Al: Comparison of the aggregator pretrained on different combinational modalities
(Pathology, Reports and RNASeq) for survival analysis. Note that pathological patch features
are extracted by UNI. Average C-Index and its std across 9 TCGA survival datasets are reported.

Pretrained Data
Pathology Reports RNASeq
w/o pretraining | | 0.666-0.068

v v | 0.679:£0.057
w/ pretraining v v 0.679£0.059
v v v 0.689+0.055

Aggregator (TransMIL) ‘ ‘ Avg C-Index
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Table A2: Macro-AUC of Slide Classification with ABMIL on 12 tasks. Best performing model

for each metric is bolded. 95% CT is included in parentheses.

Task ‘ R50 PLIP CONCH UNI mSTAR(Ours)
CAMELYON 0.9236 (0.8905,0.9567)  0.9242 (0.8915,0.9569)  0.9823 (0.9654,0.9992)  0.9814 (0.9683,0.9945) 0.9934 (0.9865,1.0000)
PANDA 0.8872 (0.8811,0.8933)  0.9045 (0.8988,0.9102)  0.9220 (0.9169,0.9271)  0.9455 (0.9410,0.9500) 0.9468 (0.9423,0.9513)

Diagnosis

UBC-OCEAN
TCGA-BRCA
TCGA-NSCLC
RCC-DHMC

0.8940 (0.8644,0.9236
0.7560 (0.6876,0.8244
0.9111 (0.8876,0.9346

0.9453 (0.9230,0.9676
0.8533 (0.8047,0.9019
0.9395 (0.9193,0.9597
0.9889 (0.9820,0.9958

0.9724 (0.9606,0.9842

0.9723 (0.9613,0.9833
0.9835 (0.9727,0.9943

0.9732 (0.9612,0.9852
0.9391 (0.9038,0.9744
0.9695 (0.9558,0.9832
0.9889 (0.9818,0.9960

0.9764 (0.9637,0.9891)
0.9441 (0.9110,0.9772)
0.9730 (0.9607,0.9853)
0.9898 (0.9837,0.9959)

)
)
)
)
0.9589 (0.9440,0.9738)
)
)
)
)
)
)

)
)
)
)
)
)
)
)
)
)
)
)

)
Do
0.9386 (0.9119,0.9653)
)
)
)

)
)
)
)
)
)
)
)
)
)
)
)

BCNB-ER 0.7974 (0.7466,0.8482)  0.8460 (0.8058,0.8862) 0.8503 (0.8072,0.8934) 0.8886 (0.8506,0.9266) 0.8887 (0.8519,0.9255)
BCNB-HER2 0.6683 (0.6075,0.7201)  0.6789 (0.6203,0.7375) 0.7465 (0.6938,0.7992)  0.7409 (0.6890,0.7928)  0.7419 (0.6896,0.7942)
Molecular Prediction | BONB-PR 0.6889 (0.6289,0.7489)  0.8041 (0.7520,0.8562) 0.8092 (0.7592,0.8592) 0.8297 (0.7787,0.8807) 0.8335 (0.7829,0.8841)
wiar Fredicion | gpaA-Molecular | 0.7017 (0.6637,0.7397)  0.7353 (0.6924,0.7782)  0.7506 (0.7161,0.7851)  0.7613 (0.7235,0.7991) 0.7646 (0.7279,0.8013)
CRC-Molecular | 0.6304 (0.5830,0.6778)  0.7451 (0.7016,0.7886)  0.8382 (0.7998,0.8766) 0.8548 (0.8227,0.8%69) 0.8560 (0.8227,0.8893)
GBMLGG-IDHI | 0.8787 (0.8250,0.9324)  0.9345 (0.9022,0.9668) 0.9777 (0.9644,0.9910) 0.9891 (0.9820,0.9962) 0.9902 (0.9831,0.9973)
Avg Macro-AUC 0.8080 0.8583 0.8953 0.9052 0.9082
Avg Rank 5.00 3.88 2.75 2.29 1.08
Table A3: Macro-AUC of Slide Classification with TransMIL on 12 tasks. Best performing
model for each metric is bolded. 95% CI is included in parentheses.
Task | R50 PLIP CONCH UNI mSTAR(Ours)
CAMELYON 0.9164 (0.8819,0.9509) 0.9161 (0.8808,0.9514) 0.9577 (0.9308,0.9846) 0.9719 (0.9550,0.9888) 0.9689 (0.9446,0.9932)
PANDA 0.8870 (0.8809,0.8931)  0.8929 (0.8868,0.8990) 0.9108 (0.9053,0.9163) 0.9311 (0.9264,0.9358) 0.9317 (0.9270,0.9364)
Dinsnosi UBC-OCEAN | 0.8891 (0.8536,0.9246) 0.9106 (0.8836,0.9376) 0.9589 (0.9409,0.9769) 0.9643 (0.9482,0.9804) 0.9722 (0.9595,0.9849)
1agnosis TCGA-BRCA 0.7553 (0.6936,0.8170)  0.8511 (0.8005,0.9017) 0.9335 (0.9061,0.9609) 0.9453 (0.9122,0.9784) 0.9480 (0.9141,0.9819)
TCGA-NSCLC | 0.9035 (0.8786,0.9284) 0.9321 (0.9111,0.9531)  0.9699 (0.9564,0.9834) 0.9725 (0.9609,0.9841)  0.9647 (0.9473,0.9821)
RCC-DHMC 0.9674 (0.9541,0.9807)  0.9622 (0.9451,0.9793) 0.9850 (0.9768,0.9932) 0.9902 (0.9843,0.9961) 0.9918 (0.9869,0.9967)
BCNB-ER 0.7508 (0.6953,0.8063)  0.8124 (0.7618,0.8630) 0.8705 (0.8297,0.9113) 0.7993 (0.7478,0.8508) 0.8791 (0.8379,0.9203)
BCNB-HER2 0.4955 (0.4355,0.5555)  0.6638 (0.6028,0.7248)  0.7035 (0.6447,0.7623)  0.6916 (0.6338,0.7494)  0.7155 (0.6606,0.7704)
Moleeular Prediction | BCNB-PR 0.6327 (0.5670,0.6984)  0.7178 (0.6586,0.7770) ~0.8062 (0.7564,0.8560) 0.7832 (0.7293,0.8371)  0.8029 (0.7537,0.8521)
outar Fredic BRCA-Molecular | 0.6476 (0.6076,0.6876)  0.7174 (0.6749,0.7599)  0.6773 (0.6338,0.7208) 0.6638 (0.6222,0.7054) 0.7638 (0.7299,0.7977)
CRC-Molecular | 0.6214 (0.5675,0.6753)  0.6147 (0.5633,0.6661)  0.6914 (0.6422,0.7406) 0.7765 (0.7349,0.8181) 0.8186 (0.7784,0.8588)
GBMLGG-IDHI | 0.9259 (0.8916,0.9602) 0.9282 (0.8953,0.9611)  0.9639 (0.9463,0.9815) 0.9640 (0.9419,0.9861)  0.9556 (0.9276,0.9836)

0.8924
1.50

Avg Macro-AUC
Avg Rank

0.7807
4.83

0.8275
3.92

0.8682
2.50

0.8702
2.25

Table A4: Macro-AUC of Slide Classification with the pretrained TransMIL on 12 datasets.
The performance gains of the aggregator (TransMIL) between “before” and “after” pretraining. “Posi-
tive” (+) values indicate performance increases (1) compared with the ones equipped with TransMIL built
from scratch, and vice versa. The best improvement is bolded.

Task | RS0 PLIP CONCH UNI mSTAR (Ours)

CAMELYON -0.16% -1.15% -0.50%  +1.60% +2.31%

PANDA +0.21%  -0.61% -0.03%  +0.95% +0.86%

Diagnosis UBC-OCEAN +2.03%  +3.19%  +0.24%  +0.55% -0.41%
TCGA-BRCA +9.10%  -0.84% -0.31%  -0.91% -0.52%

TCGA-NSCLC +2.07%  +1.18%  -1.12%  +0.26% +1.06%

RCC-DHMC +3.64%  +1.54%  +1.54% +1.01% -0.05%

BCNB-ER +7.27%  -0.56% -2.19%  +6.29% +0.64%

BCNB-HER2 +12.28% +1.76%  +3.39%  +5.08% +1.73%

Molecular Prodiction | BCNB-PR +9.86%  +0.64%  -1.70% = +1.40% -0.92%
BRCA-Molecular | +3.06%  -0.46%  +7.70%  +9.00% -0.83%

CRC-Molecular -0.67%  +14.94% +13.10% +4.85% +2.14%

GBMLGG-IDHI | +0.75%  +1.05%  +0.27%  +2.10% +2.66%

Avg increases ‘ +4.12%  +1.72%  +1.70%  +2.68% +0.72%

Table A5: C-Index of Survival Analysis with ABMIL on 9 TCGA datasets. Best performing
model for each metric is bolded. 95% CI is included in parentheses.

Task | R50 PLIP CONCH UNI mSTAR (Ours)

0.7076 (0.6180,0.7972)
0.6895 (0.6059,0.7731)
0.7923 (0.7497,0.8349)
0.6604 (0.5810,0.7398)

BRCA (1023)
CRC (579)
GBMLGG (830)
HNSC (441)

0.5696 (0.4446,0.6945)
0.5710 (0.4562,0.6857)
0.7810 (0.7425,0.8196)
0.6087 (0.5297,0.6878)

0.5915 (0.4764,0.7065)
0.7076 (0.6186,0.7966)
0.7716 (0.7307,0.8124)

0.6940 (0.6052,0.7828)
0.7026 (0.6149,0.7902)
0.7704 (0.7269,0.8139)
0.6294 (0.5478,0.7109)

0.6908 (0.5860,0.7957)
0.6906 (0.6071,0.7742)
0.7905 (0.7471,0.8339)
0.6516 (0.5718,0.7315)

KIRC (498) (0.5392,0.7123)  0.6613 (0. 0.6957 (0.6 0.7155 (0. 6496 0.7814)  0.7027 (0.6137,0.7917)
LUAD (455) 5 (0.5071,0.6920)  0.5906 (0.4978,0. 0.6233 (0.5302,0. 0.6312 (0.5316,0.7308)  0.6329 (0.5353,0.7305)
LUSC (452) (0.4395,0.6214)  0.5464 (0.4614,0.6314)  0.6045 (0.5226,0.6865)  0.6273 (0.5502,0.7044)  0.6323 (0.5538,0.7108)
SKCM (415) 0.5811 (0.5074,0.6547)  0.5648 (0.4893,0.6402)  0.6210 (0.5403,0.7017)  0.6254 (0.5478,0.7030)  0.6281 (0.5520,0.7041)
UCEC (495) 0.7450 (0.6630,0.8271)  0.7738 (0.6835,0.8640)  0.8082 (0.7080,0.9085)  0.7845 (0.6833,0.8858)  0.8092 (0.7227,0.8957)
Avg C-Index 0.6236 0.6516 0.6832 0.6897 0.6950

Avg Rank 4.56 3.67 3.00 2.33 1.44
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Table A6: C-Index of Survival Analysis with TransMIL on 9 TCGA datasets. Best performing
model for each metric is bolded. 95% CI is included in parentheses.

Task | R50 PLIP CONCH UNI mSTAR (Ours)

0.6937 (0.6098,0.7776)
0.6672 (0.5654,0.7690)
0.7829 (0.7404,0.8254)
0.6824 (0.6109,0.7539)
0.7171 (0.6369,0.7972)
0.6455 (0.5494,0.7417)
0.6272 (0.5404,0.7140)
0.6311 (0.5647,0.6976)
0.7754 (0.6988,0.8520)

BRCA (1023)
CRC (579)
GBMLGG (830)
HNSC (441)
KIRC (498)
LUAD (455)

0.6028 (0.4883,0.7174)
0.6222 (0.5148,0.7296)
0.7830 (0.7456,
0.6078 (0.5280,0.6875)
0.6868 (0.6109,0.7627)
0.5745 (0.4660,0.6829)
0.5983 (0.5068,0.6899)
0.5569 (0.4799,0.6340)
0.6973 (0.5729,0.8218)

0.6326 (0.5350,0.7302)
0.6211 (0.5042,0.7380)
0.7778 (0.7384,0.8172)
0.5783 (0.4995,0.6572)
0.7080 (0.6327,0.7833)
0.6121 (0.5100,0.7143)
0.5651 (0.4732,0.6571)
0.5941 (0.5218,0.6664)
0.7651 (0.6766,0.8537)

0.6649 (0.5657,0.7641)

»
S

0.6811 (0.6114,0.7508)
0.7071 (0.6281,0.7860)
2,

0.665! :
0.5902 (0.48/
0.5375 (0.4481,0.6270)
0.5537 (0.4799,0.6276)

UCEC (495) 0.7004 (0.6021,0.7988)

0.6366
3.89

0.6361
411

Avg x 0.6505 0.6670 0.6914
Avg Rank 3.11 2.78 1.11

Table A7: C-Index of Survival Analysis with the pretrained TransMIL on 9 TCGA datasets.
The performance gains of the aggregator (TransMIL) between “before”” and “after” pretraining. 'Posi-
tive’(+) values indicate performance increases (1) compared with the ones equipped with TransMIL built
from scratch, and vice versa. The best improvement is bolded.

Table A8: C-Index of Multimodal Survival Analysis with MCAT on 9 TCGA datasets. Best

Task |  Rs50 PLIP CONCH UNI mSTAR (Ours)
BRCA (1023) -2.06% +1.40% +2.34% +0.08% +0.08%
CRC (579) -9.90% +2.61% +3.17% +3.24% +1.56%
GBMLGG (830) +0.54% +1.93% +0.37% -0.38% -1.11%
HNSC (441) +1.04% +1.69% +5.39% -1.02% +0.21%
KIRC (498) -4.73% +3.57% +2.58% +0.95% +1.69%
LUAD (455) +6.98% +2.04% -0.57% +4.78% +0.15%
LUSC (452) +0.50% +1.51% +2.95% -3.19% -1.41%
SKCM (415) +4.290% +0.55% +2.97% +0.68% +1.53%
UCEC (495) -3.55% +7.79% +2.10% +4.20% +3.87%
Avg increases | -0.77% +2.57% +2.37% +1.04% +0.73%

performing model for each metric is bolded. 95% CI is included in parentheses.

Task ‘ R50 PLIP CONCH UNI mSTAR (Ours)
BRCA 0.7215 (0.6382,0.8048)  0.7304 (0.6428,0.8180)  0.6266 (0.5019,0.7513)  0.6928 (0.6034,0.7822) 0.7489 (0.6703,0.8275)
CRC 0.6996 (0.5994,0.7998)  0.6676 (0.5669,0.7683)  0.6635 (0.5601,0.7669)  0.6481 (0.5474,0.7488) 0.6989 (0.5943,0.8035)
GBMLGG 0.8713 (0.8343,0.9083)  0.8784 (0.8433,0.9135)  0.8886 (0.8553,0.9219) 0.8810 (0.8471,0.9149) 0.8896 (0.8610,0.9182)
HNSC 0.6830 (0.6054,0.7606)  0.6444 (0.5677,0.7211)  0.6646 (0.6008,0.7284) 0.6874 (0.6125,0.7623) 0.6907 (0.6157,0.7657)
KIRC 0.6856 (0.6130,0.7582)  0.6830 (0.6088,0.7572)  0.6996 (0.6335,0.7657) 0.7091 (0.6291,0.7891) 0.7084 (0.6407,0.7761)
LUAD 0.6375 (0.5326,0.7424)  0.6505 (0.5576,0.7434)  0.6628 (0.5681,0.7575)  0.6595 (0.5733,0.7457) 0.6953 (0.6073,0.7833)
LUSC 0.5373 (0.4420,0.6326)  0.5499 (0.4654,0.6344)  0.5526 (0.4660,0.6392)  0.5493 (0.4488,0.6498) 0.5537 (0.4590,0.6484)
SKCM 0.6724 (0.5944,0.7504) 0.6641 (0.5941,0.7341)  0.6522 (0.5781,0.7263)  0.6549 (0.5794,0.7304)  0.6520 (0.5840,0.7200)
UCEC 0.6406 (0.4967,0.7845)  0.6380 (0.5007,0.7753)  0.6754 (0.5532,0.7976)  0.6807 (0.5681,0.7933) 0.6811 (0.5751,0.7871)
Avg C-Index 0.6832 0.6785 0.6762 0.6848 0.7021

Avg Rank 3.44 3.67 3.22 3.00 1.67

Table A9: C-Index of Multimodal Survival Analysis with Porpoise on 9 TCGA datasets.
Best performing model for each metric is bolded. 95% CI is included in parentheses.

| R50 PLIP CONCH UNI mSTAR. (Ours)

BRCA 0.7366 (0.6480,0.8252)  0.7244 (0.6297,0.8191)  0.7259 (0.6369,0.8149) 0.7474 (0.6651,0.8297) 0.7456 (0.6515,0.8397)
CRC 0.6113 (0.4978,0.7248)  0.6639 (0.5571,0.7707)  0.6517 (0.5535,0.7499)  0.6599 (0.5621,0.7577) 0.7020 (0.6085,0.7955)
GBMLGG | 0.8805 (0.8472,0.9138)  0.8748 (0.8407,0.9089) 0.8786 (0.8406,0.9166) 0.8948 (0.8627,0.9269) 0.8955 (0.8643,0.9267)
HNSC 0.6982 (0.6271,0.7693)  0.6806 (0.5977,0.7635)  0.6730 (0.5981,0.7479) 0.7111 (0.6415,0.7807) 0.7189 (0.6474,0.7904)
KIRC 0.6681 (0.5934,0.7428)  0.6715 (0.5921,0.7509)  0.6802 (0.5973,0.7631) 0.6767 (0.6046,0.7488) 0.6834 (0.6115,0.7553)
LUAD 0.6656 (0.5792,0.7520)  0.6222 (0.5266,0.7178) 0.6139 (0.5265,0.7013)  0.6295 (0.5454,0.7136)  0.6300 (0.5455,0.7145)
LUSC 0.5364 (0.4490,0.6238)  0.5100 (0.4136,0.6064) 0.4911 (0.3980,0.5842) 0.5794 (0.4859,0.6729) 0.5895 (0.5027,0.6763)
SKCM 0.6383 (0.5666,0.7100)  0.6215 (0.5498,0.6932) 0.6253 (0.5510,0.6996) 0.5995 (0.5233,0.6757) 0.6182 (0.5443,0.6921)
UCEC 0.6154 (0.4809,0.7499)  0.6301 (0.4968,0.7634)  0.6565 (0.5218,0.7912)  0.6565 (0.5385,0.7745) 0.6724 (0.5340,0.8108)
Avg C-Tndex 0.6723 0.6666 0.6662 0.6839 0.6951

Avg Rank 3.22 3.89 3.72 2.61 1.56
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Table A10: C-Index of Multimodal Survival Analysis with MOTCat on 9 TCGA datasets.
Best performing model for each metric is bolded. 95% CI is included in parentheses.

| R50 PLIP CONCH UNI mSTAR (Ours)

BRCA 0.7030 (0.6075,0.7985)  0.6732 (0.5685,0.7779)  0.6781 (0.5789,0.7773)  0.6970 (0.5814,0.8126) 0.7278 (0.6276,0.8280)
CRC 0.6867 (0.5926,0.7808)  0.6695 (0.5635,0.7755)  0.6643 (0.5553,0.7733)  0.6835 (0.5765,0.7905) 0.7244 (0.6327,0.8161)
GBMLGG | 0.8838 (0.8526,0.9150) 0.8736 (0.8375,0.9097) 0.8867 (0.8555,0.9179) 0.8899 (0.8583,0.9215) 0.8889 (0.8583,0.9195)
HNSC 0.6776 (0.6045,0.7507)  0.6731 (0.6023,0.7439)  0.6679 (0.5852,0.7506) 0.6736 (0.5930,0.7542) 0.7256 (0.6546,0.7966)
KIRC 0.7124 (0.6467,0.7781)  0.6890 (0.6108,0.7672) 0.6927 (0.6163,0.7691) 0.7050 (0.6286,0.7814)  0.7085 (0.6403,0.7767)
LUAD 0.6463 (0.5559,0.7367)  0.6472 (0.5549,0.7395)  0.6685 (0.5758,0.7612) 0.6710 (0.5875,0.7545) 0.7004 (0.6138,0.7870)
LUSC 0.5618 (0.4748,0.6488)  0.5564 (0.4621,0.6507) 0.5643 (0.4704,0.6582) 0.5654 (0.4780,0.6528) 0.5855 (0.4957,0.6753)
SKCM 0.6660 (0.5874,0.7446)  0.6607 (0.5868,0.7346)  0.6454 (0.5715,0.7193)  0.6604 (0.5834,0.7374) 0.6715 (0.5972,0.7458)
UCEC 0.6446 (0.5190,0.7702)  0.6899 (0.5601,0.8197)  0.7006 (0.5869,0.8143) 0.7031 (0.5943,0.8119) 0.7353 (0.6453,0.8253)
Avg C-Index 0.6869 0.6814 0.6854 0.6943 0.7187

Avg Rank 3.00 4.33 3.89 2.56 1.22

Table A11: C-Index of Multimodal Survival Analysis with CMTA on 9 TCGA datasets. Best
performing model for each metric is bolded. 95% CI is included in parentheses.

| R50 PLIP CONCH UNI mSTAR (Ours)

BRCA 0.7118 (0.6224,0.8012)  0.7039 (0.5945,0.8133) 0.7196 (0.6157,0.8235) 0.7339 (0.6351,0.8327) 0.7375 (0.6560,0.8190)
CRC 0.6719 (0.5610,0.7828)  0.6651 (0.5514,0.7788)  0.6580 (0.5469,0.7691) 0.6727 (0.5714,0.7740) 0.7040 (0.6080,0.8000)
GBMLGG | 0.8798 (0.8447,0.9149) 0.8820 (0.8479,0.9161) 0.8822 (0.8501,0.9143) 0.9016 (0.8726,0.9306) 0.9051 (0.8798,0.9304)
HNSC 0.6764 (0.6051,0.7477)  0.6782 (0.6059,0.7505)  0.6744 (0.5964,0.7524)  0.6710 (0.5928,0.7492)  0.7092 (0.6430,0.7754)
KIRC 0.6858 (0.6158,0.7558)  0.6752 (0.5984,0.7520)  0.6963 (0.6175,0.7751)  0.7000 (0.6100,0.7900) 0.7065 (0.6279,0.7851)
LUAD 0.6502 (0.5536,0.7468)  0.6301 (0.5386,0.7216)  0.6639 (0.5645,0.7633) 0.6380 (0.5376,0.7384)  0.6574 (0.5684,0.7464)
LUSC 0.5473 (0.4569,0.6377)  0.5234 (0.4303,0.6165) 0.5352 (0.4413,0.6291)  0.5909 (0.4980,0.6838) 0.6320 (0.5497,0.7143)
SKCM 0.6514 (0.5783,0.7245)  0.6546 (0.5786,0.7306) 0.6413 (0.5643,0.7183)  0.6446 (0.5693,0.7199) 0.6488 (0.5731,0.7245)
UCEC 0.6986 (0.5786,0.8186)  0.6676 (0.5504,0.7848)  0.6932 (0.5736,0.8128)  0.7307 (0.6100,0.8514) 0.7555 (0.6669,0.8441)
Avg C-Index 0.6859 0.6756 0.6849 0.6982 0.7173

Avg Rank 3.33 4.00 3.56 2.78 1.33

Table A12: Average Macro-AUC of Few-shot Slide Classification across different shots on 6
datasets. Best performing model for each metric is in bold. Mean#std is presented.

| RS0 PLIP CONCH UNI mSTAR(Ours)
CAMELYON 0.525+£0.019  0.546:£0.033 0.504£0.020 0.666+0.087  0.7070.063
PANDA 0.574+0.020 0.664+0.045 0.648£0.031 0.604+0.022  0.62140.030
UBC-OCEAN | 0.589+0.022 0.723+0.012 0.715£0.027 0.764+0.023  0.7740.032
BCNB-ER 0.563+£0.025 0.582:£0.034  0.603+0.068 0.623+0.040  0.624:0.065
BCNB-PR 0.5354£0.049  0.599:£0.027 0.614+0.017 0.640+0.039  0.66040.030
BCNB-HER2 0.55940.054 0.5144+0.014 0.5244-0.034 0.574%+0.039 0.542+0.016
Avg Macro-AUC | 0.5575 0.6046 0.6012 0.6457 0.6548
Avg Rank 4.33 3.33 3.50 2.17 1.67
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Table A13: Macro-AUC of Few-shot Slide Classification on CAMELYON across different
shots. Best performing model for each metric is bolded. Mean+std is presented.

k-shot ‘ R50 PLIP CONCH UNI mSTAR(Ours)
k=1 0.515+0.053 0.511+0.019 0.5234+0.037 0.5714+0.114  0.659+0.086
k=2 0.486+0.030 0.521+0.026 0.489+0.045 0.5874+0.107  0.60010.090
k=4 0.545+0.035 0.5174+0.037 0.4874+0.067 0.5614+0.075  0.660+0.023
k=28 0.539+0.051 0.5374+0.012 0.5394+0.061 0.678+0.083  0.74240.051
k =16 0.522+0.067 0.571+0.015 0.4954+0.053 0.7144+0.050  0.737+0.014
k =32 0.531+£0.020 0.551+0.031 0.51440.094 0.7644+0.036  0.788+0.029
k = 64 0.537+0.083 0.612+0.152 0.4804+0.136 0.787+0.079  0.766+0.096
Avg Macro-AUC 0.5250 0.5457 0.5039 0.6660 0.7074
Avg Rank 3.93 3.71 4.36 1.86 1.14

Table A14: Macro-AUC of Few-shot Slide Classification on PANDA across different shots.
Best performing model for each metric is bolded. Mean+std is presented.

k-shot ‘ R50 PLIP CONCH UNI mSTAR(Ours)
k=1 0.552+0.057 0.564%+0.052 0.584+0.064 0.564+0.059  0.570+£0.056
k=2 0.5354+0.036  0.619+0.033 0.634+0.037 0.572+0.040  0.57440.057
k=4 0.576+0.077 0.677+0.006 0.675+£0.028 0.623+0.042  0.632+0.057
k=28 0.588+0.014 0.678+0.010 0.660+0.031 0.6094+0.010  0.643+£0.023
k=16 0.566£0.030 0.678+0.022 0.693+0.018 0.617+0.041 0.629+0.039
k =32 0.590+£0.024 0.700+0.008 0.652+0.026 0.6214+0.034  0.624+£0.035
k=64 0.588+0.038 0.6961+0.008 0.655+0.026 0.62340.011 0.650+0.028
k =128 0.598+0.005 0.701+0.010 0.634+0.022 0.606+0.009  0.646+0.025
Avg Macro-AUC 0.5741 0.6641 0.6484 0.6044 0.6210
Avg Rank 5.00 1.56 1.75 3.94 2.75

Table A15: Macro-AUC of Few-shot Slide Classification on UBC-OCEAN across different
shots. Best performing model for each metric is bolded. Mean=+std is presented.

k-shot | RS0 PLIP CONCH UNI mSTAR(Ours)
k=1 0.58540.069  0.706£0.036  0.7444+0.085 0.726+0.048  0.722:£0.049
k=2 0.62540.024  0.739£0.033  0.672+0.078 0.786+0.017  0.79040.019
k=4 0.58440.047 0.72240.061 0.729+0.037 0.763+£0.035  0.779+0.034
k=8 0.563£0.077  0.726£0.071  0.7140.042  0.779+0.069  0.806:0.089
Avg Macro-AUC | 0.5893 0.7232 0.7147 0.7635 0.7742

Avg Rank 5.00 3.50 3.00 2.00 1.50
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Table A16: Macro-AUC of Few-shot Slide Classification on BCNB-ER across different shots.
Best performing model for each metric is bolded. Mean+std is presented.

k-shot | R50 PLIP CONCH UNI mSTAR(Ours)
k=1 0.51440.084 0.539+0.104 0.627+0.106 0.595+0.090  0.606:£0.112
k=2 0.59840.048  0.633+0.061 0.679+0.082 0.614+0.095  0.617+0.143
k=4 0.57140.036  0.557+0.079 0.674+0.110 0.549+0.162  0.527+0.169
k=8 0.55940.073  0.553+0.123  0.610+0.071 0.670+0.115  0.621+£0.116
k =16 0.57240.070  0.608+0.048 0.509+0.083 0.614+0.081  0.622+0.085
k = 32 0.56140.054  0.60440.069 0.517+0.096 0.697+0.047  0.7480.051
Avg Macro-AUC | 0.5625 0.5823 0.6027 0.6232 0.6235

Avg Rank 4.00 3.33 2.67 2.67 2.33

Table A17: Macro-AUC of Few-shot Slide Classification on BCNB-PR across different shots.
Best performing model for each metric is bolded. Mean+std is presented.

k-shot | RS0 PLIP CONCH UNI mSTAR(Ours)
k=1 0.551£0.035 0.576+£0.069 0.614+0.096 0.64040.096 0.648+0.137
k=2 0.507£0.025 0.582+0.037 0.5824+0.049 0.59540.075 0.645+0.071
k=4 0.53240.092 0.567£0.093 0.608+0.102 0.60640.107 0.629+0.160
k=38 0.602+0.022 0.629+0.071 0.621+0.087 0.65640.039 0.715+0.028
k=16 0.571+0.120 0.596+0.058 0.6254+0.101 0.71640.029 0.686+0.057
k =32 0.447+0.058 0.641+0.010 0.6344+0.078 0.645+0.149 0.638+0.073
Avg Macro-AUC | 0.5350 0.5985 0.6140 0.6430 0.6602
Avg Rank 5.00 3.42 3.25 1.83 1.50

Table A18: Macro-AUC of Few-shot Slide Classification on BCNB-HER2 across different
shots. Best performing model for each metric is bolded. Mean+std is presented.

k-shot | RS0 PLIP CONCH UNI mSTAR(Ours)
k=1 0.493+£0.050 0.491+0.067  0.50240.068 0.5234+0.030  0.534-0.081
k=2 0.5324£0.027  0.507+0.033  0.5484+0.032 0.565+0.079  0.5542-0.064
k=4 0.498+0.051  0.5224+0.046 0.562+0.060 0.5304+0.037  0.51840.071
k=8 0.611+0.033 0.509+0.029 0.555£0.062 0.589+£0.053  0.561-:0.041
k=16 0.629+0.037 0.518+0.025 0.506:£0.013 0.610£0.080  0.556::0.015
k =32 0.592:0.056  0.5360.020  0.468+0.019 0.62740.040  0.53140.036
Avg Macro-AUC | 0.5592 0.5138 0.5235 0.5740 0.5423

Avg Rank 2.83 417 3.50 1.67 2.83
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Table A19: Macro-AUC of Zero-shot Slide Classification on 6 datasets. Best performing model

for each metric is in bold. 95% CI is included in parentheses.

\ R50 PLIP CONCH UNI mSTAR(Ours)

CAMELYON 0.541 (0.455,0.627)  0.622 (0.534,0.710)  0.638 (0.550,0.726) ~ 0.685 (0.601,0.769) 0.742 (0.668,0.817)
PANDA 0.480 (0.466,0.494)  0.561 (0.547,0.575) 0.582 (0.566,0.598) 0.450 (0.434,0.466) 0.462 (0.446,0.478)
UBC-OCEAN | 0.445 (0.369,0.521) 0.762 (0.691,0.833) 0.370 (0.307,0.433) 0.694 (0.620,0.769) 0.692 (0.621,0.763)
BCNB-ER 0.631 (0.535,0.727)  0.563 (0.473,0.653)  0.500 (0.500,0.500) 0.618 (0.524,0.712) 0.725 (0.641,0.809)
BCNB-PR 0.554 (0.458,0.650)  0.523 (0.435,0.611)  0.500 (0.500,0.500) 0.682 (0.598,0.766) 0.722 (0.644,0.800)
BCNB-HER2 0.549 (0.455,0.643) 0.516 (0.430,0.602) 0.518 (0.428,0.608) 0.465 (0.373,0.557) 0.435 (0.345,0.525)
Avg Macro-AUC 0.5333 0.5912 0.5180 0.5990 0.6297

Avg Rank 3.00 3.00 3.50 3.17 2.33

Table A20: Performance on Pathological Report Generation. Best performing model for each
metric is in bold. 6 metrics are reported.

Metric | RS0 PLIP CONCH UNI mSTAR (Ours)
BLEU-1 0.2510 0.2288 0.2491 0.3590 0.3662
BLEU-2 0.1240 0.1189 0.1527  0.2490 0.2585
BLEU-3 0.0692 0.0727  0.1059  0.1884 0.1981
BLEU-4 0.0410 0.0491 0.0787  0.1490 0.1583
METEOR | 0.0898 0.0915  0.1099  0.1570 0.1613
ROUGE-L | 0.1825 0.1774  0.2153  0.2991 0.3070

Table A21: Data splits (cases) of 9 cancer datasets on TCGA. CRC=COAD+READ and
GBMLGG=GBM+LGG. Apart from these specific cancer types, other TCGA datasets were used for
pretraining without data partitioning.

Cancer Type | Train Validation Test | Total
BRCA 716 102 307 1023
CRC 405 58 116 579
GBMLGG 581 83 166 830
HNSC 308 44 89 441
KIRC 348 50 100 498
LUAD 318 45 92 455
LUSC 316 45 91 452
SKCM 290 41 84 415
UCEC 346 49 100 495

Table A22: Prompts used in GPT-4 for cleaning pathology reports.

Helping me to check the formatting and spelling of the supplied text,
including some incorrect use of punctuation like mis-using of "X’ and 'z’
and capitalization and deletion of some words of unknown meaning as well.
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Table A23: Hyperparameters of ABMIL and TransMIL used for Slide Classification. A single
80GB NVIDIA H800 GPU was used for training.

Hyperparameter ‘ Value
Input dim 512/1024
Hidden dim 512
Dropout 0.25
Batch size 1
Epochs 30
Optimizer Adam
Learning rate 2e-4
Scheduler Cosine
Weight decay le-5

Table A24: Hyperparameters of ABMIL and TransMIL used for Survival Analysis. A single
80GB NVIDIA H800 GPU was used for training.

Hyperparameter ‘ Value
Input dim 512/1024
Hidden dim 512
Dropout 0.25
Batch size 1
Epochs 30
Optimizer Adam
Learning rate 2e-4
Scheduler Cosine
Weight decay le-5

Table A25: Architecture Hyperparameters of Porpoise used for Multimodal Survival Anal-
ysis. A single 80GB NVIDIA H800 GPU was used for training. D is the number of genes, varying across
different datasets.

Hyperparameter ‘ WSI  RNASeq
Input dim 512/1024 D
Hidden dim 512 — 256 256
Dropout 0.1 0.1
Feature dim after fusion ‘ 256

Table A26: Architecture Hyperparameters of MCAT and MOTCat used for Multimodal
Survival Analysis. A single 80GB NVIDIA H800 GPU was used for training. D is the number of genes,
varying across different unique functional categories and different datasets. 256 x 2 — 256 refers to 256-
dimensional features from two modalities were fused into a 256-dimensional slide-level feature.

Hyperparameter ‘ WSI  RNASeq
Input dim 512/1024 6xD
Hidden dim 256 6 x 256
Dropout 0.25 0.25

Feature dim after fusion ‘

256 x 2 — 256




Table A27: Architecture Hyperparameters of CMTA used for Multimodal Survival Analysis.
A single 80GB NVIDIA H800 GPU was used for training. D is the number of genes, varying across
different datasets. 256 x 2 — 256 refers to 256-dimensional features from two modalities were fused into
a 256-dimensional slide-level feature.

Hyperparameter ‘ WSI RNASeq
Input dim 512/1024 6xD
Hidden dim 256 6 x (1024 — 256)
Dropout 0.25 0.25
Feature dim after fusion ‘ 256 x 2 — 256

Table A28: Training Hyperparameters used in Multimodal Survival Analysis. A single 80GB
NVIDIA H800 GPU was used for training.

Hyperparameter ‘ Value

Batch size 1
Epochs 30
Optimizer Adam
Learning rate 2e-4
Scheduler Cosine
Weight decay le-5

Table A29: Architecture Hyperparameters of HistGen used for Pathology Report Genera-
tion. A single 80GB NVIDIA H800 GPU was used for training. D is the feature dimension of pathological
patch, varying across different FMs.

Hyperparameter ‘ Value
Input dim D
Hidden dim 512
Layers of decoder 3 (8 heads)
Dimension of cross-modal context | 512 x 2048
Optimizer Adam
Learning rate le-4
Beam size 3
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Table A30: Prompt templates for all tasks that required prompts. In these templates, the placeholder
"CLASSNAME” was replaced with the actual name of the class. The class prompts of CLASSNAME for
each task are presented in A31-A36.

EiS

Prompt

CLASSNAME.

a photomicrograph showing CLASSNAME.

a photomicrograph of CLASSNAME.

an image of CLASSNAME.

an image showing CLASSNAME.

an example of CLASSNAME.

CLASSNAME is shown.

this is CLASSNAME.

there is CLASSNAME.

a histopathological image showing CLASSNAME.
a histopathological image of CLASSNAME.

a histopathological photograph of CLASSNAME.
a histopathological photograph showing CLASSNAME.
shows CLASSNAME.

presence of CLASSNAME.

CLASSNAME is present.

an H&E stained image of CLASSNAME.

an H&E stained image showing CLASSNAME.
an H&E image showing CLASSNAME.

an H&E image of CLASSNAME.

CLASSNAME, H&E stain.

CLASSNAME, H&E.

Close-up view of CLASSNAME.

Detailed image capturing CLASSNAME.
Microscopic analysis reveals CLASSNAME.
CLASSNAME under magnification.

The structure of CLASSNAME is visible.
Diagnosing CLASSNAME.

Typical appearance of CLASSNAME.

Zoomed image of CLASSNAME.

CLASSNAME in detail.

CLASSNAME at high magnification.
CLASSNAME in a clinical sample.

Clinical representation of CLASSNAME.
Pathological review of CLASSNAME.
Characteristics of CLASSNAME observed.
CLASSNAME identified.

Diagnosis: CLASSNAME.

Specimen showing CLASSNAME.

View of CLASSNAME with immunohistochemistry.
CLASSNAME with special staining.

Observation of CLASSNAME with fluorescent staining.
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Table A31: Class prompts for Breast Metastasis Detection.

Task ‘ Class ‘ CLASSNAME
metastatic cancer
Tumor lymph node with metastatic cancer

metastatic breast cancer in lymph node

Breast Metastasis Detection tumor

non-metastatic

lymph node without metastatic cancer
non-metastatic lymph node

normal

Normal

Table A32: Class prompts of PANDA for Prostate ISUP grading.

Task ‘ Class ‘ CLASSNAME

benign tissue,
healthy tissue,
non-cancerous tissue,
normal tissue

Gleason score 6,
ISUP grade 1,
low-grade cancer,
Gleason pattern 343

Gleason score 7 (3+4),

ISUP grade 2,

moderately differentiated cancer,
Gleason pattern 3+4

Prostate ISUP grading Gleason score 7 (4+3),

ISUP grade 3,

moderately differentiated cancer,
Gleason pattern 443

Gleason score 8,

ISUP grade 4,

high-grade cancer,

Gleason pattern 444, 3+5, or 5+3

Gleason score 9 or 10,

ISUP grade 5,

high-grade aggressive cancer,
Gleason pattern 445, 5+4, or 5+5
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Table A33: Class prompts of UBC-OCEAN for Ovarian Cancer Subtyping.

Task | Class | CLASSNAME

high-grade serous carcinoma,
HGSC | ovarian high-grade serous carcinoma,
high-grade serous carcinoma of ovary

low-grade serous carcinoma,
LGSC | ovarian low-grade serous carcinoma,
low-grade serous carcinoma of ovary

endometrioid carcinoma,
ovarian endometrioid carcinoma,

Ovarian Cancer Subtyping EC o .
endometrioid carcinoma of ovary

clear cell carcinoma,
CC | ovarian clear cell carcinoma,
clear cell carcinoma of ovary

mucinous carcinoma,
MC | ovarian mucinous carcinoma,
mucinous carcinoma of ovary

Table A34: Class prompts of BCNB for ER Prediction.

Task ‘ Class CLASSNAME

ER positive,

ER+,

ER positive breast cancer,

Positive | Estrogen Receptor positive,

ER+ breast cancer,

ER positive carcinoma,

Estrogen Receptor positive breast cancer

ER Prediction ER negative,

ER-,

ER negative breast cancer,

Negative Estrogen Receptor negative,

ER- breast cancer,

ER negative carcinoma,

Estrogen Receptor negative breast cancer
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Table A35: Class prompts of BCNB for PR Prediction.

Task ‘ Class CLASSNAME

PR positive,

PR+,

PR positive breast cancer,

Positive | Progesterone Receptor positive,

PR+ breast cancer,

PR positive carcinoma,

Progesterone Receptor positive breast cancer

PR Prediction PR negative,

PR-,

PR negative breast cancer,

Negative Progesterone Receptor negative,

PR- breast cancer,

PR negative carcinoma,

Progesterone Receptor negative breast cancer

Table A36: Class prompts of BCNB for HER2 Prediction.

Task ‘ Class CLASSNAME

HER2 positive,

HER2+,

HER2 positive breast cancer,

o HER2 overexpression,

Positive | HER2+ breast cancer,

HER2 positive carcinoma,

Human Epidermal growth factor Receptor 2 positive,
Human Epidermal growth factor Receptor 2 overexpression

HER2 Prediction
HER2 negative,

HER2-,

HER2 negative breast cancer,

Negative | 10 HER2 overexpression,

HER2- breast cancer,

HER?2 negative carcinoma,

Human Epidermal growth factor Receptor 2 negative
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