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Abstract—The fusion of high spatial resolution panchro-
matic (PAN) data with simultaneously acquired multispec-
tral (MS) data with the lower spatial resolution is a hot topic,
which is often called pansharpening. In this article, we exploit the
combination of machine learning techniques and fusion schemes
introduced to address the pansharpening problem. In particular,
deep convolutional neural networks (DCNNs) are proposed to
solve this issue. The latter is combined first with the tradi-
tional component substitution and multiresolution analysis fusion
schemes in order to estimate the nonlinear injection models that
rule the combination of the upsampled low-resolution MS image
with the extracted details exploiting the two philosophies. Fur-
thermore, inspired by these two approaches, we also developed
another DCNN for pansharpening. This is fed by the direct differ-
ence between the PAN image and the upsampled low-resolution
MS image. Extensive experiments conducted both at reduced
and full resolutions demonstrate that this latter convolutional
neural network outperforms both the other detail injection-based
proposals and several state-of-the-art pansharpening methods.

Index Terms— Component substitution (CS), deep convolu-
tional neural network (DCNN), image fusion, multiresolution
analysis (MRA), pansharpening, remote sensing.

I. INTRODUCTION

ANSHARPENING has become a fundamental problem

in remote sensing image processing since it can fuse a
textithigh spatial resolution panchromatic (PAN) image and
a low spatial resolution multispectral (MS) image in order to
obtain an MS image with the highest (PAN) spatial resolution.
PAN and MS images are quite common in the field of remote
sensing imaging, and they are usually simultaneously acquired
by sensors mounted on many satellites, such as IKONOS,
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WorldView-2, and WorldView-3. Pansharpening has attracted
the interest of the scientific community. This is justified by the
contest launched by the Data Fusion Committee of the IEEE
Geoscience and Remote Sensing Society in 2006 [3], [4] and
many recently published review articles [5], [6]. Furthermore,
pansharpened products have attracted the interest of some
commercial companies, e.g., Google Earth, and pansharpening
has been exploited as preliminary a step for several image
processing tasks, e.g., change detection [7], [8].

Most of the pansharpening works can be divided into
four categories, i.e., component substitution (CS) meth-
ods, multiresolution analysis (MRA) approaches, variational
optimization-based (VO) techniques, and machine learn-
ing (ML) approaches.

CS and MRA approaches play an important role in the com-
munity of pansharpening. They have shown promising perfor-
mance with a balanced computational burden. The CS-based
methods rely on the concept of the projection of the MS
image into a new domain, where the spatial information can be
easily separated into a component, usually called the intensity
component. Then, the (possibly equalized) PAN image can
be substituted with the intensity component. The sharpened
version of the MS image is obtained due to the inverse pro-
jection bringing the data to the original MS domain. CS-based
methods can generate outcomes with high spatial fidelity
paid by a usually greater spectral distortion. Some power-
ful instances of methods belonging to this category are the
band-dependent spatial-detail (BDSD) with local parameter
estimation [9], the robust (BDSD-PC) method [10], the partial
replacement adaptive component substitution (PRACS) [11],
and Gram—Schmidt (GS) spectral sharpening [12].

MRA-based approaches inject spatial details extracted from
the PAN image through an MRA framework into the MS
image in order to get the high spatial resolution MS image.
MRA-based products preserve spectral information but can
suffer from spatial distortion. The examples of methods into
this class are the smoothing filter-based intensity modulation
(SFIM) [13], the additive wavelet luminance proportional
(AWLP) [14], the “a-trous” wavelet transform [15], the Lapla-
cian pyramid (LP) [16], the generalized Laplacian pyramid
(GLP) [17], [18], the GLP with robust regression [19], and
the GLP with full-scale regression (GLP-Reg) [20].

Recently, VO approaches have shown competitive ability
in addressing the pansharpening issue. Techniques belonging
to this class include the Bayesian methods [21]-[23],
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variational approaches [24]-[36], and compressed sensing
techniques [37]-[39]. Despite their formal mathematical ele-
gance, VO approaches provide only incremental performance
improvements with respect to the state-of-the-art of CS and
MRA methods; such improvement comes at the cost of
high computational burden and presence of many parameters
to be tuned explaining why CS and MRA are nowadays
commonly advocated both for benchmarking and practical
uses.

With the tremendous improvements of hardware, convolu-
tional neural networks (CNNs) have recently become a power-
ful tool to deal with pansharpening and its related applications
(see [1], [2], [40]-[54]). The CNN-based methods depend on
the large-scale data set training to learn a nonlinear functional
mapping between the low spatial resolution MS images and the
high spatial resolution MS images. After the training phase,
it is easy to predict/compute the pansharpened image by the
learned nonlinear mapping. Masi et al. [41] first proposed a
simple and effective CNN architecture with three layers called
pansharpening neural network (PNN). This architecture is
mainly based on a previous CNN architecture for single image
super-resolution [55] and yields state-of-the-art pansharpening
outcomes. Liu er al. [52] presented a good way to inject
the high-pass details of the PAN image into the upsampled
MS image, even by exploiting classical injection gains. This
way is a bit like the scheme of traditional CS and MRA
methods, but the extraction of the high-pass details is not
in agreement with the classical procedures performed by CS
and MRA approaches. Yang et al. [1] proposed a deeper
network architecture than PNN, which is called PanNet. The
PanNet architecture incorporates domain-specific knowledge
and mainly focuses on two important issues, i.e., spectral and
spatial preservations, obtaining state-of-the-art results. Further-
more, due to the use of high-pass filtering, the given architec-
ture also shows the relevant ability of network generalization.
He et al. [2] proposed a detail injection-based convolutional
neural network (DiCNN). In particular, the authors developed
two detail injection-based architectures, i.e., DICNNI1, whose
detail injection depends on both MS and PAN images, and
DiCNN2, whose detailed injection depends only on PAN
images. DiCNN2 is designed to alleviate the computational
burden; instead, DICNN1 is more oriented to high quantitative
performance getting state-of-the-art results. However, there is
still room for improvement focusing on aspects as network
complexity, training time, robustness, and so forth.

In this article, we propose deep CNNs to address the pan-
sharpening problem, even accounting for fusion schemes pro-
posed in the literature. In particular, we focus our attention on
traditional CS and MRA frameworks. The details are extracted
using these two philosophies. Instead, the nonlinear injection
model is estimated through CNNs. These approaches are here
named CS-Net and MRA-Net, respectively. Inspired by these
solutions, we further investigate this idea feeding the network
with details directly extracted by differencing the single PAN
image with each MS band. This solution allows us to avoid
compromising the spatial information with a preprocessing
step using detailed extraction techniques proposed in classical
pansharpening approaches, letting the CNN spectrally adjust
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Fig. 1. First row: flowchart for pansharpening on an eight-band WorldView-3
satellite data with a spatial resolution factor equal to 4. The figure includes
the low spatial resolution MS image, the PAN image, and the GT image.
Second and third rows: the pansharpened images and the corresponding AEMs
of three (high-performance) deep CNNs, i.e., PanNet (SAM/ERGAS/Q8
= 5.05/3.33/0.936) [1], DiCNNI (5.02/3.22/0.945) [2], and the proposed
Fusion-Net (4.63/3.02/0.951). In the second row, the fused products are
represented in natural colors. From the third row, it is clear that the proposed
Fusion-Net yields the darker AEM implying superior performance with respect
to the competitors.

the extracted details (e.g., the details are clearly biased)
through the estimation of the nonlinear and local injection
model. This approach will be called Fusion-Net from hereon.
The proposed approaches are tested on several data sets
acquired by the WorldView-2, WorldView-3, GaoFen (GF)-2,
and QuickBird (QB) data sets. The experimental analysis is
conducted both at reduced and full resolutions. The benchmark
consists of state-of-the-art CS and MRA approaches and ML
methods for pansharpening. The proposed Fusion-Net method
clearly shows state-of-the-art performance outperforming the
methods in the adopted benchmark both quantitatively and
qualitatively. Finally, discussions about network complexity,
training time, convergence, and robustness are provided to the
readers for all the compared CNN approaches.

In summary, the main contributions of this work are as
follows.

1) Two physically justified CNNs (i.e., CS-Net and
MRA-Net) have been proposed deriving them from the
traditional CS and MRA frameworks.

2) Inspired by CS-Net and MRA-Net, the Fusion-Net has
also been proposed to reach state-of-the-art performance
(see the comparison among the high-performance CNNs
in Fig. 1 for a WorldView-3 data set). Moreover,
the Fusion-Net has a simple architecture with fewer
network parameters, thus resulting in more effective
than some previously developed network architectures
for pansharpening.
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3) A broad experimental analysis has been provided based
on several data sets. The performance is assessed both
at reduced and full resolutions. The numerical outcomes
are also corroborated by a qualitative analysis. Finally,
a deep discussion on the network generalization, conver-
gence property, computational time, and robustness on
large data sets has been provided to the readers for all
the considered CNN approaches.

This article is organized as follows. The related works
and motivations are introduced in Section II. The proposed
three network architectures will be detailed in Section III.
Section IV is devoted to the description of the experimental
results and the related discussions. Finally, conclusions are
drawn in Section V.

II. RELATED WORKS AND MOTIVATIONS

The proposed network is initially inspired by two traditional
pansharpening frameworks, i.e., CS and MRA. Therefore,
we will first introduce them in this section, and then, we will
move toward the motivations under the choice of the proposed
network architectures.

A. CS

The general fusion equation for CS-based methods is as
follows:

MS; =MS; +g®P-1), i=1,2..,B %)

where MS; € RM*N _is the ith band of the high spatial
resolution MS image, MS; € RM*V is the ith band of the
upsampled version of the low spatial resolution MS image,
gi € R is the ith injection coefficient (a real number for
global approaches) that controls the injection of the extracted
details, P € RM*N represents the PAN image, and I, €
RM>N is the intensity component, generally defined as I} =
Zle w;MS;, where w; € R is the ith weight. Many CS-based
pansharpening algorithms rely upon (1), just changing the
ways to estimate the injection coefficients g; and the weights
w; (see [9], [11]-[13]).

Equation (1) could be further rewritten in the following
multiband form:

MS = MS +g o (P° — I?) @)

where MS ¢ RM*N>xB_and MS € RMxNxB are_obtained
by stacking the bands MS;, i = 1,2,...,B and MS;, i =
1,2,..., B, respectively, PP € RM*NxB apd [P ¢ RMxNxB
are yielded by duplicating along the spectral dimension the
PAN image, P, and the intensity component, I, respectively,
g = (g1,8,...,88)7 € R® is a vector of coefficients g; as
in (1), and © is an operator indicating that the ith element of
g multiplies the ith spectral band of PP — IP.

B. MRA

Similar to the CS-based method, the MRA-based method
follows the following equation:

MS = MS +g 0 (P° — PP) (3)
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where IVIE, ﬁg, PP, g, and the operator ©® have the same
definitions as in (2). Different from I? in (2), PP € RM*N*B jg
yielded by duplicating along the spectral dimension of the P,
image that represents the low-pass spatial resolution version of
the PAN image, P. By differencing PP and PLD, ie., PP — PLD,
the PAN spatial details can be extracted. Classical MRA
approaches differ from each other in the way to extract PAN
details and how to estimate the injection coefficient g in (3)
(see [14], [15], [17]).

C. Motivations

The CS and MRA approaches have achieved promising
performance in the field of pansharpening. However, a big
limitation for both the classes is the common assumption of
using linear injection models, which does not generally hold
having a look at the relative spectral responses of sensors
usually exploited for pansharpening (e.g., it is easy to note
the overlaps among the MS spectral responses).

This consideration has motivated us to avoid linear injection
models developing nonlinear approaches, aiming to replace the
detailed injection phases in both CS and MRA methods. Deep
convolutional neural networks (DCNNs) can easily manage
this nonlinear mapping task due to the fact that they are able
to reproduce strong nonlinearities in the data. Thus, they rep-
resent the best solution for the problem at hand. In particular,
we still follow the general classical framework based on two
phases: 1) detail extraction and 2) detail injection into the
original MS image. However, we address the issue of nonlinear
and local estimation of injection coefficients leveraging on
DCNNs. Thus, in what follows, we will present the three
proposed solutions based on different DCNN architectures for
pansharpening (i.e., CS-Net, MRA-Net, and Fusion-Net).

III. PROPOSED NETWORK ARCHITECTURES

This section is devoted to the presentation of the DCNNs
proposed in this work. We will present first the two CS- and
MRA-based networks. Afterward, the Fusion-Net will be
detailed.

A. CS-Net

Let us recall (2), in which the pansharpened product MS
is equal to the sum of the upsampled MS image MS and the
injected details g© (PP —1?). In this equation, the upsampled
MS image MS holds the spatial information at low resolution,
and (PP — I?) provides the high frequency details, injected
through g.

Equation (2) requires the estimation of the injection coef-
ficients g. Instead, we ignore that the injection coefficients
considering the pansharpened image, MS, consist of the
upsampled MS image MS plus the details coming from the
nonlinear mapping provided by a DCNN feeding it with
(P? — 1?). In summary, the CS-Net can be summarized as
follows:

MS = MS + fo., (P” - 1I7) “)

where fe., is the nonlinear mapping with the network para-
meter Ocg that could be learned from a large-scale training
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Architecture of the CS-Net. The upsampling is performed using a polynomial kernel with 23 coefficients [17]. For “NetWork,” please refer to
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Section III-D.

data set. Several solutions to get the weights w;,i =1,..., B
for I, are given by the pansharpening literature, from con-
stant to band-dependent (estimated) weights. From our broad
experimental analysis, comparable results can be obtained by
the CS-Net using these different intensity components.

Starting from (4), it is easy to build the corresponding
network architecture (see Fig. 2). In particular, the final loss
function for the CS-Net can be defined under the metric of
mean squared error (MSE) computed on training examples.
Hence, we have

[T 2
Loss(®cs) = = > [MS( + foos (PR — 1)) — 6T,
k=1
(5)
where n represents the number of training examples, || - ||F is

the Frobenius norm, and GTy, is the kth example extracted
from the ground-truth (GT) image. By minimizing the loss
function (5), the network fg will be enforced to automatically
learn an optimal mapping with parameters @cs. Thus, the

Spectral preservation

Architecture of the MRA-Net. The upsampling is performed using a polynomial kernel with 23 coefficients [17]. For “NetWork,” please refer to

fusion can be completed by summing the weighted spatial
details to the upsampled MS image following (4).

B. MRA-Net

Similar to the analysis of the CS-Net, we d/egve the architec-
ture of MRA-Net. The pansharpened image MS in (3) consists
of the upsampled MS image MS plus the injected details
g O (PP — PP). Again, we ignore the injection coefficients g
by imposing a nonlinear mapping function estimated through
a DCNN fed by (PP — PP). Therefore, the MRA-Net can be
summarized as follows:

I\//IE = M\g + fOMRA (PD - PIL)) (6)

where fe@,,, is the nonlinear mapping function with network
parameters ®yra. Several solutions to get P, from P are given
by the pansharpening literature, from average to Gaussian fil-
ters. Again, from our broad experimental analysis, comparable
results can be obtained by the MRA-Net using these different
ways to spatially filter the PAN image.

Using (6), it is easy to design the network architecture of
the MRA-Net (see Fig. 3). In particular, the loss function of

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on October 20,2021 at 11:17:02 UTC from IEEE Xplore. Restrictions apply.



DENG et al.: DETAIL INJECTION-BASED DCNNs

Duplication
D —

6999

Structure preservation

PP —MS

NetWork
Ops

fors(PP — MS)

Image detail output ar

Spectral preservation

Fig. 4.
Section III-D.

the MRA-Net is defined as follows:

1 2

Loss(®Owmra) = ; Z“MS{k}—i-f@MRA (ch}_PlL){k}) — GT[k} HF
k=1

)

where the definitions of symbols are the same as that of (5).

C. Fusion-Net

CS-Net and MRA-Net have been developed starting from
the two classical fusion schemes related to CS and MRA.
Thus, they have a solid and physical justification rooted in
the pansharpening literature. However, in order to extract the
details, preliminary assumptions should be done either on the
shape of the spatial filters (for MRA-Net) or on the spectral
model ruling the projection of the MS image into the PAN
domain (for CS-Net). Errors in this phase can have a great
impact on the outcomes reducing the performance of the
proposed approaches. Thus, aiming of having a detail-based
architecture, but avoiding the above-mentioned issue, the solu-
tion of subtracting the duplicated version of the PAN image,
PP, with the upsampled MS image, MS, is advisable. This
has also the advantage to alleviate the computation burden of
the approach avoiding to calculate I? or PP. The limitation of
this solution is instead related to the strong spectral distortion
introduced in the extracted details (e.g., biased details) that
can be easily compensated by the network during its training
phase.

Another clear issue in the design of CS-Net and MRA-Net is
that only data projected into the PAN domain are presented to
the DCNNs. Namely, the inputs of the networks are practically
monochromatic images i.e., without any spectral content).
Thus, both the CS-Net and the MRA-Net receive no spectral
information from these data. The networks fed in this way are
not able to adequately reconstruct image features along the
spectral direction, even training them with enough examples
and a proper number of iterations. Instead, the use of P? —MS
as details to feed the network has the advantage to intrinsically
introduce the spectral information. All these cues are supported
by the experimental analysis showing that the Fusion-Net
outperforms the other two proposed approaches.

Architecture of the Fusion-Net. The upsampling is performed using a polynomial kernel with 23 coefficients [17]. For “NetWork,” please refer to

Similar to the CS-Net and the MRA-Net, we ignore the
injection coefficients g in the general fusion equation of
CS/MRA methods, allowing a DCNN to automatically esti-
mate the nonlinear injection model. The Fusion-Net can be
summarized as follows:

MS = MS + fo (PD - Mvs) (8)

where fg,, is the nonlinear mapping with network
parameters Ops.

Starting from (8), the network architecture of the proposed
Fusion-Net is described in Fig. 4. In particular, the loss

function for the Fusion-Net is as follows:

1 no - b
LOSS(QFs) = ; ZHMS{"} —i—f@FS (P}])(] —MS[k}) - GT[k} HF
k=1
)

where the definitions of symbols are the same as that of (5).

Note that the Fusion-Net proposed in the work can be also
regarded as a support strategy for deep learning (DP), thus
improving the performance of existing methods. Please refer
to Section IV for details about the performance gains.

D. Network Selection

We have proposed three deep network architectures for
pansharpening, i.e., CS-Net, MRA-Net, and Fusion-Net. They
all involved a subnetwork for training, i.e., “NetWork™ (see
the solid green boxes in Figs. 2—4). The main structure of
“NetWork™ is presented in Fig. 5(a). Wherein, we choose an
effective network recently proposed in the literature, called
ResNet [56], as the subnetwork of the proposed architectures
since the ResNet can bring the conventional CNN to deeper
layers leading to an effective and competitive performance in
many image applications. Fig. 5 shows the basic structure of
one ResNet block, in which one skip connection for every
two convolutional layers is shown. In practical experiments,
we need to empirically tune the number of ResNet blocks to
control the final convolutional layers, aiming to achieve the
best performance (see the parameter setting in Section IV).
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Fig. 5. (a) Structure of “NetWork” with several ResNet blocks (see the solid

green boxes in Figs. 2-4). Note that (3 x 3, 32) represents 32 convolution
kernels with size 3 x 3, and s depends on the number of MS bands (e.g., for
four-band image s = 4 and for eight-band image s = 8). (b) Details
of one ResNet block [56] that is used in our architectures. Each ResNet
block contains two nonlinear rectified linear unit (ReLU) activation functions.
In particular, the ResNet block is slightly different in the case of “MRA-Net,”
where we have (3 x 3, 64). For further details, please refer to Table I.
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matching PAN
sensor’s
Original PAN T
23-tap polynomial
interpolator
|a I I ta
LRMS i
Original HRMS MS
(GT)

Fig. 6. Generation process of the training data set by Wald’s protocol. Note
that the data indicated with the red text are the generated training data used to
feed the networks, i.e., the GT, the low spatial resolution MS (LRMS) image,
the PAN, and the upsampled MS image (MS).

E. Generation of Training Data

In this work, we train the CNNs on WorldView-3 (eight
bands) satellite data sets that can be easily downloaded on the
public website.! After downloading the data sets, we simulate
12580 PAN/MS/GT image pairs with the size 64 x 64,
16 x 16 x 8, and 64 x 64 x 8, respectively, and then split
them into 70/20/10% for training (8806 examples?)/validation
(2516 examples)/testing (1258 examples). Note that since the
GT images are not available, we need to follow Wald’s pro-
tocol [57] to get them. The process of simulating the training
data set by Wald’s protocol is illustrated in Fig. 6. It mainly
contains the following steps: 1) downsampling the original
PAN and the original MS image by a resolution factor 4
using modulation transfer function (MTF)-based filters, seeing

Thttp://www.digitalglobe.com/samples?search=Imagery

2We tried to simulate the same training data set as in [1] (PanNet), but,
in the original article, the authors do not indicate which WorldView-3 data
sets are selected for the training. However, in our work, all deep learning-based
methods are trained on the same data set for a fair comparison.
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the downsampled PAN image as the training PAN image
and the downsampled MS image as the training MS image;
2) taking the original MS image as the training GT image; and
3) upsampling the training MS image by using a polynomial
kernel with 23 coefficients [17] and interpreting the output as
the upsampled MS image. Following steps 1-3, it is easy to
generate the training data. The validation and testing data sets
are similarly built.

IV. EXPERIMENTAL RESULTS

In this section, we compare the proposed network archi-
tectures (i.e., CS-Net, MRA-Net, and Fusion-Net) with some
recent state-of-the-art pansharpening approaches belonging to
the CS, the MRA, and the ML classes. First, the employed
sensors, the benchmark, and the adopted quality indexes will
be described. Afterward, the experimental analysis both at
reduced and full resolutions will be described.

A. Data Sets

Several data sets have been acquired by the WorldView-2
and WorldView-3 sensors. The former provides a
high-resolution PAN channel and eight MS bands. Four
standard colors (red, green, blue, and near-infrared 1) and
four new bands (coastal, yellow, red edge, and near-infrared
2) are acquired. Although the native spatial resolution would
be greater, the images are distributed with a pixel size
of 0.5 and 2 m for PAN and MS, respectively. The spatial
resolution ratio is equal to 4. The radiometric resolution
is 11 bits. WorldView-3 data have the same features as
WorldView-2 data, but with a spatial resolution of about
0.3 m for the PAN channel and of about 1.2 m for the MS
bands and a radiometric resolution of 11 bits. Moreover,
we also assess the performance on four-band (red, green,
blue, and near-infrared) data sets. In particular, QB data
are considered having a spatial resolution of 2.4 and
0.61 m for the MS and PAN images, respectively, and a
radiometric resolution of 11 bits. Finally, images acquired
by the GF-2 sensor have been exploited with a spatial
resolution of 3.2 and 0.8 m for the MS and PAN images,
respectively, and a radiometric resolution of ten bits (please
see Section IV-H for more details).

B. Benchmark

The proposed benchmark consists of the following methods:
the MS image interpolation using a polynomial kernel with
23 coefficients (EXP ) [17], the GS sharpening approach [12],
the SFIM [13], the PRACS approach [11], the BDSD
method [9], the robust BDSD approach (BDSD-PC) [10],
the GLP with MTF-matched filter [58] and multiplicative
injection model [59] [GLP-high-pass modulation (HPM)],
the GLP with MTF-matched filter [58] and regression-based
injection model [GLP-context-based decision (CBD)] [3], [17],
the GLP with full-scale regression (GLP-Reg) [20], the state-
of-the-art CNN-based method for pansharpening (PNN) [41],?

3Note that the given source code in open remote sensing does not contain the
trained models for WV2 and WV3; thus, we reimplemented the network with
default parameters in Python using Tensorflow for simplicity of comparison.
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TABLE I

OPTIMAL PARAMETERS FOR THE COMPARED DCNNS. NOTATION: ITER. # (ITERATION NUMBER), BS (MINIBATCH SIZE), ALGO
(OPTIMIZATION ALGORITHM), LR (LEARNING RATE), FS (FILTER S1ZE FOR EACH LAYER), FILT. # (FILTER NUMBER
FOR EACH LAYER), N (THE NUBMER OF RESNET BLOCKS), AND LY. # (NUMBER OF LAYERS)

’ Para. ‘ PNN DRPNN CS-Net MRA-Net DiCNN1 PanNet DMDNet Proposed
Iter. # | 1.12 x 10° 3 x 10° 1.8 x 10° | 1.6 x 10> | 3 x 10° | 2.4 x 10° | 2.5 x 10° | 1.4 x 10°
Bs 128 64 64 64 32 32 32
Algo SGD SGD Adam Adam Adam Adam Adam Adam
Lr 0.00001 0.05, 0.005 0.0003 0.0003 0.0001 0.0001 0.0001 0.0003
Fs 9x9,5%x5 TXT 3x3 3x3 3x3 3x3 3x3 3x3
Filt. # 64, 32 64 32 64 32 64 32
N - - 4 - 4 4 4
Ly. # 3 11 10 3 10 10 10

TABLE 11

the state-of-the-art CNN-based method for pansharpening deep
residual PNN (DRPNN) [44],* the state-of-the-art CNN-based
method for pansharpening (PanNet) [1],° the state-of-the-art
CNN-based method for pansharpening (DiCNN1) [2],% the
state-of-the-art CNN-based method with dilated convolu-
tion for pansharpening (DMDNet) [60],” and the proposed
CS-Net, MRA-Net, and Fusion-Net. Note that the source codes
of all CS and MRA-based methods can be found on public
websites.

For a fair comparison, all the compared CNNs are trained on
Python 3.5.2 with Tensorflow 1.0.1 on a desktop PC equipped
with a GPU NVIDIA GeForce GTX 1080 with 8 GB.

C. Quality Assessment

The performance assessment is conducted both at reduced
and full resolutions. The former is performed using the spectral
angle mapper (SAM) [61], the relative dimensionless global
error in synthesis (ERGAS) [62], the spatial correlation coef-
ficient (SCC) [63], and the universal image quality index
for four-band images (Q4) and eight-band images (Q8) [64].
In particular, the ideal value for Q4, QS8, and SCC is 1, while,
for SAM and ERGAS, it is 0. Furthermore, to evaluate the
performance at full resolution, we employ the quality without
reference (QNR), D,, and Dy indexes [6]. The QNR has an
ideal value of 1, instead D,; and D; have an ideal value of 0.

D. Parameters Tuning

Before going through the description of the experimental
results, the tuning parameters of the CNN-based approaches
are shown. As mentioned in Section III-E, the training data
for PanNet and DiCNNI in this work are different from that
of their original articles; thus, it may lead to slightly different
optimal parameters. We tried to do our best to have the highest
performance for both the PanNet and the DiCNNI1 with a
full parameter tuning in order to have a fair comparison.

41t is not easy to find the source code; thus, we reimplemented the
network with default parameters in Python using Tensorflow for simplicity
of comparison.

3Code link: https://xueyangfu.github.io/

®DiCNNI has been implemented by ourselves.

"DMDNet has been implemented by ourselves.

Shttp://openremotesensing.net/kb/codes/pansharpening/

QUANTITATIVE COMPARISON OF THE COMPARED DEEP NETWORKS
FOR THE TESTING DATA SET THAT INCLUDES 1258 SAMPLES.
BEST RESULTS IN BOLDFACE

‘ ‘ SAM (& std) ERGAS (&£ std) Q8 (£ std) SCC (& std)
PNN 44015 &+ 1.3292 | 3.2283 £ 1.0042 0.8883 & 0.1122 0.9215 & 0.0464
DRPNN 4.2657 &+ 1.2431 | 3.0317 £ 0.9507 0.9010 & 0.1089 0.9317 & 0.0475
DiCNN1 3.9805 £ 1.3181 | 2.7367 £ 1.0156 0.9096 £ 0.1117 0.9517 £ 0.0471
PanNet 4.0921 + 1.2733 | 2.9524 £ 0.9778 0.8941 &+ 0.1170 0.9494 £ 0.0460
DMDNet 39714 + 1.2482 | 2.8572 £ 0.9663 0.9000 + 0.1141 0.9527 & 0.0446
CS-Net 4.4851 & 1.4605 | 3.1036 £ 1.1241 0.8937 &+ 0.1156 0.9388 + 0.0509
MRA-Net 4.5309 £ 1.4350 | 3.2657 &+ 1.1169 0.8865 4 0.1180 0.9372 4 0.0482
Fusion-Net | 3.7435 + 1.2259 | 2.5679 + 0.9442 | 0.91353 £ 0.1122 0.9580 + 0.0450

We summarize the optimal parameters of all CNN methods
in Table 1.°

E. Reduced Resolution Assessment

After the training phase, we need to validate the perfor-
mance of the compared CNN methods on WorldView-3 testing
data. In this phase, we exclude classical CS and MRA methods
because they will be strongly penalized by the absence of
a training phase using similar samples that will be found
in the testing data set. Thus, this analysis is only devoted
to comparing CNN-based approaches trained on the same
examples.

In Table II, we first show the average quantitative results
of the different methods on the testing data set containing
1258 testing examples. For each testing example, the sizes of
PAN, MS, and GT images are the same as that of the training
examples, i.e., 64 x 64 for the PAN image, 16 x 16 x 8§ for
the original low spatial resolution MS image, and 64 x 64 x 8
for the GT image. From Table II, it is clear that the proposed
Fusion-Net obtains the best average quantitative performance
for all the quality indexes. Furthermore, the standard devia-
tions (std) of all the metrics get the smallest values for all
the indexes, which also demonstrates the robustness of the
proposed Fusion-Net. In particular, having a look at Table II,

9Note that PanNet, CS-Net, MRA-Net, and Fusion-Net use ResNet blocks
if the number of layers for one of these networks is 10, which means that
there are 4 ResNet blocks (each block with two layers) and two extra input
and output layers.

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on October 20,2021 at 11:17:02 UTC from IEEE Xplore. Restrictions apply.



7002

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 59, NO. 8, AUGUST 2021

(h) (i) ()

Fig. 7.

® (m) (n)

Visual comparisons in natural colors of the most representative 13 approaches on the Rio data set (WorldView-3). (a) EXP. (b) GS. (¢) SFIM.

(d) BDSD. (e) BDSD-PC. (f) GLP-Reg. (g) GLP-CBD. (h) PNN. (i) DRPNN. (j) DiCNNI. (k) PanNet. (I) DMDNet. (m) Fusion-Net. (n) GT.

() (b) (© (@ (e) ® (2
() ® ) ) ® (m) ()

Fig. 8. AEMs of Fig. 7. (a) EXP. (b) GS. (c) SFIM. (d) BDSD. (e) BDSD-PC. (f) GLP-Reg. (g) GLP-CBD. (h) PNN. (i) DRPNN. (j) DiCNNI1. (k) PanNet.

(1) DMDNet. (m) Fusion-Net. (n) GT.

it is clear that the results of CS-Net and MRA-Net are
worse than that of the recent DL-based methods (see the
reasons underlined in the first two paragraphs in Section III-C).
Hence, we will not show the results of CS-Net and MRA-Net
from hereon, considering as a unique comparison the one
with Fusion-Net. However, the presentation of CS-Net and
MRA-Net is still meaningful since the proposed Fusion-Net
is inspired and motivated by them.

A further test is about the use of two new WorldView-3 data
sets capturing scenarios never presented to the networks in
their training phase. In this case, the whole benchmark is used
considering the comparison fair even when classical CS and
MRA approaches are used. Again, Wald’s protocol is used to
generate a reference (GT) image, as described in Section III-E.
The two data sets will be named Rio and Tripoli from hereon,
which both hold 30-cm resolution. Their size is 256 x 256 x 8
for the GT image, 256 x 256 for the PAN image, and
64 x 64 x 8 for the original low spatial resolution MS image.
Table III indicates that the best performance is still reached

by the proposed Fusion-Net outperforming the performance of
all the other compared pansharpening approaches for all the
quality metrics. Similar conclusions can be drawn when the
Tripoli data set is used.

The visual analysis further corroborates these numerical
results. Indeed, in Fig. 7 (Rio data set), it is clear to see
that the visual results provided by the classical CS and MRA
methods (e.g., GS, SFIM, BDSD, BDSD-PC, GLP-Reg, and
GLP-CBD) show low spatial performance with evident blur
effects. Moreover, all six CNN methods perform significantly
better than the classical methods (both spatially and spec-
trally). This demonstrates the ability of CNN methods to
address the problem of pansharpening. It is worth to be
remarked that it is not easy to distinguish the visual differ-
ences among the CNN methods in Fig. 7. This is due to
the limitations in representing 8-bit RGB images instead of
the 11-bit MS data. However, exploiting the calculation of the
absolute error maps (AEMs) of Fig. 8, the visual advantages
of the proposed Fusion-Net are pointed out getting lower
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Fig. 9.

® (m) (n)

Visual comparisons in natural colors of the most representative 13 approaches on the Tripoli data set (WorldView-3). (a) EXP. (b) GS. (c) SFIM.

(d) BDSD. (e) BDSD-PC. (f) GLP-Reg. (g) GLP-CBD. (h) PNN. (i) DRPNN. (j) DiCNNI. (k) PanNet. (I) DMDNet. (m) Fusion-Net. (n) GT.

() (b) (© (@ (e) ® (2
() ® ) ) ® (m) ()

Fig. 10. AEMs of Fig. 9. (a) EXP. (b) GS. (c) SFIM. (d) BDSD. (e) BDSD-PC. (f) GLP-Reg. () GLP-CBD. (h) PNN. (i) DRPNN. (j) DICNNI. (k) PanNet.

(1) DMDNet. (m) Fusion-Net. (n) GT.

image residuals (see the close-up boxes in Fig. 8). The same
conclusions can be drawn for the visual analysis of the fusion
outcomes using the Tripoli data set in Figs. 9 and 10.

F. Full-Resolution Assessment

In this section, we test the performance of the proposed
benchmark at the original (full) scale. In this case, the GT
image is not available requiring quality indexes without ref-
erence for performance assessment purposes. We exploited
30 image pairs (MS and PAN) of WorldView-3 data at the orig-
inal scale (OS) for testing the approaches using the QNR as
the quality index. Table IV shows the quantitative assessment
for all the methods in the benchmark. The six deep networks,
i.e., PNN, DRPNN, DiCNN1, PanNet, DMDNet, and the
proposed Fusion-Net, outperform the classical approaches.
Having a look at the overall quality index QNR, the best
average performance is obtained by the proposed Fusion-
Net, even with a limited standard deviation implying that we
got a robust result. The same can be stated for the spectral

index D;. Moreover, the best performance (comparable with
the PanNet one) is obtained on the spatial index D;. Finally,
Fig. 11 shows the visual performance on a full-resolution
WorldView-3 data set, here named the Tripoli-OS data set. It is
easy to remark from Fig. 11 the lower spatial performance
of the classical CS and MRA methods (e.g., GS, SFIM,
BDSD, BDSD-PC, GLP-Reg, and GLP-CBD), whereas all
the CNN-based methods significantly outperform the classical
approaches, both spatially and spectrally. Furthermore, the pro-
posed Fusion-Net obtains better spatial performance than that
of the other five CNN-based methods. Meanwhile, Fusion-Net
is also able to preserve the spectral information.

G. Network Generalization

We have demonstrated that the proposed Fusion-Net out-
performs the other pansharpening approaches in the bench-
mark on WorldView-3 data when the networks are also
trained on WorldView-3 data. In this section, we will focus
on the capability of the networks to generalize the results
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Fig. 11.

Visual comparisons in natural colors of the most representative 13 approaches on the Tripoli-OS data set (WorldView-3) at the OS. (a) EXP. (b) GS.

(c) SFIM. (d) BDSD. (e) BDSD-PC. (f) GLP-Reg. (g) GLP-CBD. (h) PNN. (i) DRPNN. (j) DiCNNI. (k) PanNet. (I) DMDNet. (m) Fusion-Net. (n) PAN.

TABLE III

QUANTITATIVE RESULTS FOR R10 DATA SET AND TRIPOLI DATA
SET (WORLDVIEW-3). BEST RESULTS ARE IN BOLDFACE

TABLE IV

AVERAGE VALUES OF QNR, D, AND Dy WITH THE RELATED
STANDARD DEVIATIONS (STD) FOR THE 30 FULL-RESOLUTION
DATA (WORLDVIEW-3). BEST RESULTS ARE IN BOLDFACE

| [ QNR(Estd) | Dy (Estd | D, (Esd) |
EXP 0.8032 £ 0.0612 | 0.0422 & 0.0204 | 0.1241 £ 0.0661
GS 0.8866 & 0.0606 | 0.0218 & 0.0194 | 0.0944 & 0.0458
SFIM 0.9234 £ 0.0523 | 0.0268 & 0.0270 | 0.0518 & 0.0292
BDSD 0.8822 & 0.0286 | 0.0354 £ 0.0169 | 0.0852 & 0.0264
BDSD-PC_| 0.8001 £ 0.0232 | 0.0344 £ 0.0152 | 0.0837 = 0.0231
PRACS 0.8985 & 0.0634 | 0.0224 & 0.0194 | 0.0817 & 0.0482
GLP-HPM | 0.8834 £ 0.0323 | 0.0368 £ 0.0371 | 0.0718 = 0.0492
GLP-CBD | 0.9043 £ 0.0683 | 0.0333 £ 0.0285 | 0.0651 & 0.0454
GLP-Reg | 0.9082 & 0.0601 | 0.0322 & 0.0295 | 0.0629 % 0.0521
PNN 0.9342 £ 0.0481 | 0.0297 & 0.0232 | 0.0361 & 0.0244
DRPNN | 0.9437 £ 0.0630 | 0.0225 £ 0.029 | 0.0318 & 0.0270
DICNNI__| 0.9390 = 0.0417 | 0.0214 £ 0.0210 | 0.0409 = 0.0242
PanNet 0.9511 & 0.0306 | 0.0221 & 0.0137 | 0.0241 & 0.0180
DMDNet | 0.9587 £ 0.0310 | 0.0240 £ 0.0138 | 0.0237 £ 0.0145
Fusion-Net | 09612 =+ 0.0272 | 0.0180 £ 0.0158 | 0.0243 = 0.0151

[ [ SAM [ ERGAS [ Q8 [ SCC [ Time ]
Rio dataset
EXP 4.203 5.5976 0.6927 0.6156 | 0.0312
GS 4.0614 3.8956 0.8666 0.8979 | 0.0440
SFIM 3.9132 3.563 0.8859 0.888 0.0251
BDSD 3.9567 2.8494 0.9361 0.9077 0.0796
BDSD-PC 3.8065 2.8494 0.9363 0.9061 0.1701
PRACS 4.026 3.2501 0.9062 0.8972 | 0.1765
GLP-HPM | 4.1349 3.4917 0.8935 0.8817 0.2037
GLP-CBD 3.7068 2.7732 0.935 0.9092 | 0.1069
GLP-Reg 3.6871 2.776 0.9345 0.9095 0.1476
PNN 3.3728 2.3082 0.9488 0.9409 | 0.5475
DRPNN 3.1216 2.1669 0.9674 0.9585 0.6163
DiCNN1 3.0248 1.9119 0.9686 0.9627 0.5527
PanNet 3.0054 1.9506 0.9651 0.964 0.5880
DMDNet 2.9355 1.8119 0.96905 | 0.96993 | 0.6198
Fusion-Net | 2.8338 1.7510 0.9728 0.9714 | 0.5477
Tripoli dataset
EXP 6.7883 8.5719 0.7235 0.5129 | 0.0339
GS 7.1416 7.3237 0.7879 0.7251 0.0507
SFIM 6.3486 6.8407 0.8343 0.7341 0.0231
BDSD 6.8533 6.7863 0.8448 0.7338 0.0621
BDSD-PC 6.4985 6.7186 0.8475 0.7313 0.1615
PRACS 6.6680 7.0012 0.8266 0.7253 0.1848
GLP-HPM | 6.8196 6.8881 0.8393 0.7350 | 0.1918
GLP-CBD 6.4178 6.5443 0.8503 0.7392 | 0.1102
GLP-Reg 6.4100 6.5463 0.8548 0.7394 | 0.1405
PNN 5.0778 3.9614 0.9214 0.9242 | 0.5515
DRPNN 4.8411 3.7810 0.9454 0.9468 0.6173
DiCNN1 4.7552 3.4978 0.9444 0.9482 | 0.5476
PanNet 4.6079 3.4227 0.9395 0.9516 | 0.5812
DMDNet 4.4282 3.1972 0.9458 0.9613 0.6020
Fusion-Net | 4.2764 3.0568 | 0.9522 0.9646 | 0.5467

fusing data acquired by different sensors. To this aim,
we exploit another data set acquired by another eight-band
sensor, i.e., WorldView-2, but using the networks trained on
WorldView-3 data. In order to have an accurate assessment,
we still leverage on Wald’s protocol to generate the so-called
Stockholm data set acquired by the WorldView2 sensor.
Quantitative results reported in Table V indicate that the pro-

posed Fusion-Net is again the best approach outperforming the
benchmark on the metrics of ERGAS and Q8. The DMDNet
obtains slightly better SAM and SCC metrics than Fusion-Net
since it employs the dilated convolution that could significantly
increase the receptive field, whereas our Fusion-Net only uses
conventional convolution. Fig. 12 corroborates this statement.
It is easy to see that all the CNN methods yield better spatial
performance than the CS and MRA approaches. In Fig. 13,
the AEMs of Fig. 12 are also shown. Again, the proposed
Fusion-Net exhibits the darker residual map demonstrating its
superiority with respect to the other compared approaches even
from a qualitative point of view.

H. Assessment on Four-Band Data Sets

In this section, we will extend the performance assessment
to four-band data sets, i.e., acquired by the GF-2 and the QB
Sensors.

About the data simulation, we also follow the way described
in Section III-E to generate the training and testing data.
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Fig. 12. Visual comparisons in natural colors of the most representative 13 approaches on the Stockholm data set (WorldView?2). (a) EXP. (b) GS. (c¢) SFIM.
(d) BDSD. (e) BDSD-PC. (f) GLP-Reg. (g) GLP-CBD. (h) PNN. (i) DRPNN. (j) DiCNNI1. (k) PanNet. (1) DMDNet. (m) Fusion-Net. (n) GT.
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Fig. 13. AEMs of Fig. 12. (a) EXP. (b) GS. (c) SFIM. (d) BDSD. (e) BDSD-PC. (f) GLP-Reg. (g) GLP-CBD. (h) PNN. (i) DRPNN. (j) DiCNNI. (k) PanNet.
(1) DMDNet. (m) Fusion-Net. (n) GT.

TABLE V to simulate 20 685 training samples (size: 64 x 64 x 4), and the
QUANTITATIVE RESULTS ON THE STOCKHOLM DATA SET right part (4906 x 1000 x 4) is used to simulate 48 testing data
(WORLDVIEW2). BEST RESULTS ARE IN BOLDFACE (size: 256 x 256 x 4). For the GF-2 test case, we downloaded
l [ SAM [ ERGAS | Q8 [ SCC | a large data s§t (6907.x 7300 x 4) over Fhe city of Beij.ing
EXP 78500 | 9.6793 | 0.6540 | 04505 from the website!® to simulate 21 607 training examples (size:
GS 7.7296 | 73644 | 0.8075 | 0.8439 64 x 64 x 4). Besides, a huge image acquired over the
SFIM 7.1147 | 6.9570 | 0.8434 | 0.8562 Guangzhou city is downloaded to simulate 81 testing data
BDSD 7.1824 6.3772 0.8798 0.860 ize: 256 % 256 x 4
BDSD-PC | 7.0953 | 63233 | 0.8810 | 0.8578 (Slz?' X x 4). .
PRACS 75804 | 7.4080 | 0.8314 | 0.8125 Figs. 14 and 15 present the visual performance of the
GLP-HPM | 72988 | 6.9965 | 0.8527 | 0.8355 five representative CNN-based methods.!! The visual results
gi}:‘gf]) ;'}?gg 2'2‘9‘33 gg;;é 8’3323 provided by the six CNN methods all obtain competitive
-Reg . . . . . . .
PNN 68624 | 5.6259 1 0.8642 | 0.8539 outcomes? both spatlall}.f and spectrally. Ag previously said,
DRPNN 64798 | 5.6450 | 0.8843 | 0.8668 the RGB images shown in the first rows of Figs. 14 and 15 are
DiCNN1 6.8159 | 59773 | 0.8802 | 0.8797 not enough to show the differences of compared methods; thus,

PanNet 6.3916 5.6302 0.8897 | 0.8895
DMDNet 6.1986 5.5692 0.8903 | 0.8965
Fusion-Net | 6.2784 5.5499 | 0.8969 | 0.8897

we calculate the AEMs in the second rows of Figs. 14 and 15

10Data link: http://www.rscloudmart.com/dataProduct/sample
"Note that, since our CS-Net and MRA-Net get weak performance accord-

For the QB test case, we downloaded a large data set ing to the results on WorldView-2 and WorldView-3 data sets, hence, for
4906 x 4906 x 4 ’, d he ci £ Indi li the sake of brevity, we excluded these two methods from the analysis.
(4906 x 4906 x 4) acquired over the city of Indianapolis cut- Furthermore, for the same reason, we only show the results of the five CNN

ting it into two parts. The left part (4906 x 3906 x 4) is used  methods.
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Fig. 14. Visual comparisons in natural colors of the most representative six approaches on the Guangzhou data set (sensor: GF-2). (First Row) Visual results.
(Second Row) AEMs. (a) PNN. (b) DRPNN. (c) DiCNNI. (d) PanNet. (¢) DMDNet. (f) Fusion-Net. (g) GT. (h) PNN. (i) DRPNN. (j) DiCNNI. (k) PanNet.

(1) DMDNet. (m) Fusion-Net. (n) GT.

(h) (i) ()

® (m) (n)

Fig. 15. Visual comparisons in natural colors of the most representative six approaches on the Indianapolis data set (sensor: QB). (First Row) Visual results.
(Second Row) AEMs. (a) PNN. (b) DRPNN. (c) DiCNNI. (d) PanNet. (¢) DMDNet. (f) Fusion-Net. (g) GT. (h) PNN. (i) DRPNN. (j) DiCNNI. (k) PanNet.

(1) DMDNet. (m) Fusion-Net. (n) GT.

to aid the visual comparison. From the two figures, the pro-
posed Fusion-Net clearly shows its spatial advantages getting
lower image residuals (see the close-up boxes). Moreover,
from Table VI, the proposed Fusion-Net still yields better
quantitative assessments than the other compared approaches.

1. Discussion

Based on the previously shown results, it is clear that the
CNN methods obtain better performance than the classical
CS and MRA methods. This is mainly due to the fact that
these methods exploit large-scale data for the training phase.
In this section, we will discuss more about the detail images,
the convergence, the network complexity, the computational
times in both testing and training phases, the number of
parameters (NoPs), and the giga floating-point operations
per second (GFLOPs).

1) Detail Images: Unlike the previously shown AEMs,
Fig. 16 displays the detailed images in order to point out

the differences among the compared methods. The detailed
images are obtained by taking the absolute value of the
difference between the fused and the EXP images. From
Fig. 16, the Fusion-Net gets the darker detail image, which
demonstrates the effectiveness of the proposed method even
exploiting this different representation of the fused outcomes.

2) Convergence: Fig. 17 exhibits the training errors of
all the deep network methods with increasing iterations.
It is worth to be noted that the maximum number of itera-
tions for each method is the corresponding optimal iteration.
It is straightforward that the training error of the proposed
Fusion-Net (black line) reaches a lower level than those of
the other approaches, which demonstrates that the Fusion-Net
gets better training effectiveness.

3) Network Complexity: The proposed Fusion-Net is sim-
pler than the PanNet. Comparing it with PanNet, Fusion-Net
does not need to calculate the high-pass filtered version of
the PAN image, thus reducing the training time with respect
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TABLE VI

QUANTITATIVE ASSESSMENT OF THE COMPARED NETWORKS FOR THE GF-2 TESTING DATA SET (81 SAMPLES) AND
THE QB TESTING DATA SET (48 SAMPLES). BEST RESULTS IN BOLDFACE

[

SAM (£ std)

[ ERGAS (£ std) |

Q4 (£ std)

[

SCC (£ sd)

l

Guangzhou (GF-2)

PNN

1.6599 £ 0.3606

1.5707 £ 0.3243

0.9274 £+ 0.0202

0.9281 £ 0.0206

DRPNN

1.4578 £ 0.2289

1.3735 £ 0.1876

0.9308 £ 0.0148

0.9384 £ 0.0052

DiCNN1

1.4948 £ 0.3814

1.3203 £ 0.3543

0.9445 £ 0.0211

0.9458 £ 0.0222

PanNet

1.3954 £ 0.3261

1.2239 £ 0.2828

0.9468 £ 0.0222

0.9558 + 0.0123

DMDNet

1.2968 £ 0.3156

1.1281 £ 0.2669

0.9529 £ 0.0218

0.9644 + 0.0100

Fusion-Net

1.1795 £ 0.2714

1.0023 £ 0.2271

0.9627 + 0.0167

0.9710 £ 0.0074

Indianapolis dataset

(QB)

PNN

5.7993 £ 0.9474

5.5712 £ 0.4584

0.8572 £ 0.1481

0.9023 £ 0.0489

DRPNN

5.3667 £ 0.7721

5.270 £ 0.2809

0.8745 £ 0.1320

0.9177 £ 0.0454

DiCNN1

5.3071 £ 0.9957

5.231 £ 0.5411

0.8821 £ 0.1431

0.9224 £ 0.0506

PanNet

5.3144 £+ 1.0175

5.1623 £ 0.6814

0.8833 £+ 0.1398

0.9296 + 0.0585

DMDNet

5.1197 £ 0.9399

4.7377 £+ 0.6486

0.8907 £ 0.1464

0.9350 £ 0.0652

Fusion-Net

4.5402 £ 0.7789

4.0508 + 0.2666

0.9102 + 0.1364

0.9547 £ 0.0457
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Detail images of the different compared methods on a sample belonging to the Indianapolis data set (sensor: QB). (a) GS. (b) SFIM. (c) BDSD.

(d) BDSD-PC. (e) GLP-Reg. (f) GLP-CBD. (g) PNN. (h) DRPNN. (i) DiCNNI. (j) PanNet. (k) DMDNet. (1) Fusion-Net.
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Fig. 17. Convergence curves for all the compared CNN methods on the

WorldView-3 training data set. Note that we trained the PNN method with
1.12 x 10° iterations, but, here, we only show MSEs of the first 3 x 10°
iterations for better display.

to PanNet. The architecture of DMDNet is similar to that of
the PanNet, but DMDNet has a structure of grouped dilated
convolution and, thus, is more complicated than PanNet. The

architecture of DiCNNI1 is slightly simpler than the PanNet
and the Fusion-Net, but it is only a three-layer network
meaning that is not easy to extract sufficient image features.
The architecture of PNN is a simple three-layer network
without any skip connection; thus, it is also not easy to extract
enough image features from the simple network. In addi-
tion, the architecture of the DRPNN contains a skip con-
nection and 11 layers, thus having a better feature extraction
ability.

4) Testing Time: Table III reports the testing time of all the
compared methods on two WorldView-3 data (i.e., Rio data set
and Tripoli data set, both with size 256 x 256 x 8). Classical
CS and MRA methods generally reach shorter testing times
than that of the CNN methods. Furthermore, it is worth to
be noted that CNN times are calculated on special hardware
architecture (GPU); instead, to calculate the times of the CS
and MRA approaches, a general-purpose CPU has been used.
However, the testing time of the proposed networks can be
considered acceptable on these data.

5) Training Time: The training times of all the CNNs are
reported using the same training data set. The maximum
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Fig. 18.

TABLE VII

COMPARISON OF TRAINING TIMES FOR ALL THE COMPARED
CNN METHODS (UNIT: HOURS: MINUTES)

PNN DRPNN DiCNN1 PanNet DMDNet Fusion-Net

1.12 x 10% | 3 x 10% | 3 x 10° | 2.4 X 10° | 2.5 X 10% | 1.4 x 10°
25: 15 14: 25 7: 06 4: 32 5: 27 22 |

TABLE VIII
COMPARISON OF NOPs AND GFLOPS FOR ALL
THE COMPARED CNN METHODS

\ | NN [ DRPNN | DiCNNI | PanNet | DMDNet | Fusion-Net |

NoPs 3.1x 105 | 5.5x10% | 1.8 x 10% | 2.5 x 10° | 3.2 x 10% | 2.3 x 10°

GFLOPs 0.427 7.619 0.192 0.340 0.359 0.323

iteration for each method is the optimal one used in the
training phase. In Table VII, the proposed Fusion-Net yields
the shortest training time mainly due to the fewer iterations
when reaching convergence.

6) NoPs and GFLOPs: The NoPs and the GFLOPs of
all the compared CNNs are reported in Table VIII. From
Table VIII, it is clear that the DiCNN gets the best performance
on the NoPs and the GFLOPs due to its simple architecture
with only three convolutional layers. The proposed Fusion-Net
holds the second place, which is better than other compared
DL-based networks. The DRPNN approach gets the worse
NoPs and GFLOPs since it involves more filters and the
convolutional kernels with a larger size, i.e., 7 x 7.

7) Optimal Iteration Number for Fusion-Net: We want to
investigate the optimal value of the iteration number for the
proposed Fusion-Net. In order to select it, we consider an
exemplary reduced resolution data set as the Rio data set.
We calculated the performance metrics (the average of five
runs) as in Fig. 18 taking the number of iterations that show
the best overall quality. Thus, we refer to the value that gets
the maximum Q8 index (around 140000 iterations in Fig. 18)
due to the fact that the Q8 can be considered an overall
quality index. However, all the reduced resolution performance
metrics are often in agreement with each other (see Fig. 18).

V. CONCLUSION

In this article, we investigated new architectures of CNNs
for pansharpening. In particular, we focused our attention on
DCNN s inspired by the classical fusion schemes exploited in

Iter. # for Training (x 20000)

Iter. # for Training (x 20000)

Iteration number against quality metrics by averaging five runs on the Rio data set for the proposed Fusion-Net.

CS and MRA methods. Thus, detail-based networks have been
proposed and assessed on real WorldView-2, WorldView-3,
GF-2, and QB data. The performance of the proposed ML
methods has been compared with several state-of-the-art CS
and MRA techniques and some powerful CNN-based methods
for pansharpening. It has been demonstrated that the pro-
posed Fusion-Net is able to get the best performance both at
reduced and full resolutions. Finally, interesting features of the
proposed Fusion-Net have been underlined from other points
of view (e.g., computational burden, generalization capabil-
ity, and robustness) comparing it with the other CNN-based
methods.
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