
1796 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 44, NO. 4, APRIL 2025

HMIL: Hierarchical Multi-Instance Learning for
Fine-Grained Whole Slide Image Classification
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Abstract— Fine-grained classification of whole slide
images (WSIs) is essential in precision oncology, enabling
precise cancer diagnosis and personalized treatment strate-
gies. The core of this task involves distinguishing subtle
morphological variations within the same broad category
of gigapixel-resolution images, which presents a signif-
icant challenge. While the multi-instance learning (MIL)
paradigm alleviates the computational burden of WSIs,
existing MIL methods often overlook hierarchical label
correlations, treating fine-grained classification as a flat
multi-class classification task. To overcome these limi-
tations, we introduce a novel hierarchical multi-instance
learning (HMIL) framework. By facilitating on the hierarchi-
cal alignment of inherent relationships between different
hierarchy of labels at instance and bag level, our approach
provides a more structured and informative learning pro-
cess. Specifically, HMIL incorporates a class-wise attention
mechanism that aligns hierarchical information at both the
instance and bag levels. Furthermore, we introduce super-
vised contrastive learning to enhance the discriminative
capability for fine-grained classification and a curriculum-
based dynamic weighting module to adaptively balance
the hierarchical feature during training. Extensive experi-
ments on our large-scale cytology cervical cancer (CCC)
dataset and two public histology datasets, BRACS and
PANDA, demonstrate the state-of-the-art class-wise and
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overall performance of our HMIL framework. Our source
code is available at https://github.com/ChengJin-git/HMIL.

Index Terms— Fine-grained image recognition, multi-
instance learning, hierarchical classification, whole-slide
image classification.

I. INTRODUCTION

WHOLE-SLIDE images (WSIs) have been acknowl-
edged as the gold standard for diagnosis [1], [2].

In precision oncology, fine-grained classification of WSIs is
essential for accurate diagnosis and treatment planning. Unlike
merely distinguishing between benign and malignant cases or
simple categorization into two or three broad classes, fine-
grained classification involves observing subtle morphological
differences among cancer subtypes by examining different
cell types and tissue structures within WSIs. This detailed
classification provides doctors with more information to
make accurate diagnoses and personalized treatment decisions,
which is essential for recommending precise treatments such
as surgery, radiation, and hormonal therapy [3].

Significant challenges are presented in fine-grained WSI
classification due to the need to differentiate subtle variations
under the gigapixel resolutions inherent in WSIs, setting it
apart from natural image classification tasks [4]. To this
end, multi-instance learning (MIL) has emerged as a lead-
ing approach for WSI classification. In this method, each
slide is treated as a “bag” containing multiple image patches
(instances), and only the bag-level labels are required for
training. Despite advancements in MIL, there has been limited
progress in addressing fine-grained classification tasks within
WSI.

Hierarchical classification incorporates hierarchical labels
and corresponding network designs to tackle fine-grained
classification challenges [5], [6]. In contrast to prior methods
that address the problem in the setting of flat multi-class clas-
sification, hierarchical classification leverages the underlying
structure of cancer subtypes. Several studies have attempted
to address the challenges of fine-grained WSI classification
within this context [7], [8], [9]. Specifically, Mercan et al.
[7] conceptualized this as a multi-instance, multi-label learn-
ing problem. They utilized a conventional max-pooling MIL
method constrained by a multi-label loss, where the instances
were regions of interest identified by pathologists. However,
their approach did not incorporate the hierarchical mapping
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Fig. 1. Comparison among prior works and our proposed HMIL framework in fine-grained WSI analysis. Left: Conventional flat classification
methods, which form fine-grained classification as a multi-class classification task. Middle: Prior hierarchical classification methods, which typically
leverage detector-enriched instance feature for hierarchical classification. Right: Our HMIL framework relaxed the need for detectors, introducing
hierarchical alignment at both instance and bag level to improve fine-grained classification.

among cancer subtypes across different hierarchies, which has
been empirically shown to enhance the performance of fine-
grained image recognition in natural images [10], [11], [12].
Introducing hierarchical mapping could provide valuable prior
knowledge, aiding in distinguishing subtle differences between
closely related subtypes.

Recognizing this potential, Lin et al. [8] proposed DPNet,
which utilizes instance-level annotations along with a hierar-
chical grouping loss in the instance detector and a rule-based
classifier for slide-level predictions. Gao et al. [9] leverage
information bottleneck theory to model pathologist-selected
instances with hierarchical features within a multi-task frame-
work, which employs an auxiliary instance-level classifier to
enrich the feature representation for slide-level classification.
While these approaches have advanced fine-grained WSI clas-
sification, their reliance on instance-level annotations limits
broader applicability and fails to fully exploit hierarchical
information for semantic guidance at both the instance and
bag levels in MIL models.

To this end, we propose a novel hierarchical multi-instance
learning (HMIL) framework. As illustrated in Figure 1, our
HMIL framework adopts a dual-branch structure: a coarse
branch for coarse-grained classification and a fine branch for
fine-grained classification. Between this dual-branch structure,
we introduce hierarchical alignment at both instance and bag
levels to better guide the learning process. At the instance
level, both branches utilize class-wise attention-based MIL
to introduce the foundation of hierarchical information, and
the hierarchical instance matching module aligns the fine

branch’s class-wise attention with the coarse branch’s class-
wise attention through a fine-to-coarse similarity constrain.
At the bag level, the hierarchical bag alignment module
ensures fine-to-coarse prediction consistency by aligning the
predictions of both branches. Moreover, we incorporate super-
vised contrastive learning [13] to strengthen the discriminative
capability of the fine branch by maximizing inter-class dis-
tances and minimizing intra-class variations. Recognizing that
the broad knowledge provided by the coarse branch may not
sufficiently guide fine-grained classification, we introduce a
dynamic weighting strategy to balance the influence between
the coarse and fine branches during training.

The contributions of this paper are twofold. First, we for-
mulate and explore hierarchical classification under the MIL
settings and propose a novel framework termed HMIL. This
framework leverages holistic hierarchical guidance at both the
instance and bag levels to optimize the learning of feature
embeddings and refine predictions, thereby enhancing the
model’s ability to differentiate closely related cancer subtypes.
Second, we evaluated our HMIL framework extensively on
multiple fine-grained classification WSI datasets across various
imaging modalities, including our private large-scale cytology
cervical cancer (CCC) WSI classification dataset, which com-
prises 33,528 cytology WSIs, as well as two public histology
WSI datasets, specifically BRACS [14] and PANDA [15]. Our
findings indicate that HMIL achieves state-of-the-art perfor-
mance compared to baseline models and enhances class-wise
performance, revealing the importance of incorporating label
hierarchy into the model.
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II. RELATED WORK

A. MIL in WSI Classification

In WSI classification, to tackle the challenges of gigapixel-
sized WSIs with weak annotations, many methods primarily
utilize the MIL framework. This framework involves three
main stages: extracting features at the patch level, aggregating
these patch-level features into slide-level representations, and
training a classifier with these representations using slide
labels for fully supervised prediction. Existing MIL methods
in WSI classification can be broadly categorized based on their
reliance on instance-level annotations.

Methods that rely on instance-level annotations typically
leverage detailed region-specific information annotated by
pathologists to enhance classification accuracy. Early works
in histology WSI classification [16], [17] and more recent
works in cytology classification adopt this approach. These
methods leverage patch-level annotations for training patch-
based detection classification models that extract patch-level
features, which are then aggregated to enable slide-level pre-
dictions within the MIL framework. For instance, Cheng et al.
[18] introduced a progressive detection method that utilizes
multi-scale features for abnormal cell detection, followed
by a recurrent neural network (RNN) [19] for slide-level
classification. Cao et al. [20] enhanced detection performance
by integrating clinical knowledge and an attention mechanism
into their AttFPN cell detection model. Zhang et al. [21]
employed the RetinaNet [22] detection model for suspicious
cell detection and the ResNeXt-50 [23] classification model for
detection label refinement at instance level. At slide level, they
aggregate them using graph attention networks (GAT) [24]
for WSI classification. However, these methods require labor-
intensive, disease-specific manual annotations on the instances,
limiting their applicability across different diseases.

In response, recent efforts have focused on developing
frameworks that only require slide labels. Under this context,
MIL methods can be further categorized into two directions:
the design of feature extractors leveraging self-supervised
methods and the exploration of various aggregation strate-
gies [25]. Advancements have been made in the pretraining
of feature extractors [26], [27], [28], [29], [30] inspired by
contrastive learning strategies in self-supervised learning [31],
[32]. These methods aim to create robust feature represen-
tations that can be used in subsequent aggregation phase.
At the aggregation phase, literature attempts to select the
discriminative feature. Ilse et al. [33] introduced aggregation
based on instance-level attention scores, marking a semi-
nar effort in this direction. Subsequently, Lu et al. [34]
developed a clustering-constrained attention MIL for WSI
cancer classification, employing class-wise attention pooling
to selectively emphasize on instances. Similarily, Zhang et al.
[35] proposed multi-branch attention learning with stochas-
tic masking strategy for discriminative instance discovery.
Yu et al. [28] enhanced feature selection by extracting multiple
cluster prototypes. From the perspective of alleviating the
negative impact of insufficient training data, Zhang utilized
bag augmentation by dividing training bags into smaller bags
and applying double-tier feature distillation for training [36].

Liu et al. employed a mixup approach for bag and label aug-
mentation [37]. Furthermore, innovative network architectures
have been explored. Shao et al. employed the self-attention
mechanism of the Transformer architecture [38] for histol-
ogy WSI analysis, as exemplified by TransMIL [39]. Recent
advancements by Fillioux et al. [40] have investigated the
structured state space model for long sequence modeling
of patches within the MIL framework. Nevertheless, these
techniques focus solely on a single resolution, which may
neglect contextual nuances, prompting the development of
multi-resolution methods [26], [27] to apprehend hierarchical
features at different resolution levels.

These advancements underscore the potential of MIL mod-
els that require only slide-level labels compared to previous
methods. However, existing methods primarily focus on binary
or ternary classification tasks, which are relatively simple
compared to fine-grained classification.

B. Hierarchical Fine-Grained Recognition

Fine-grained recognition is challenging due to small inter-
class differences that complicate the distinction between
similar categories. Conventional flat classifiers often fail to
capture hierarchical relationships, limiting recognition accu-
racy. In response, hierarchical fine-grained recognition (HFR)
assigns hierarchical labels to data points, enhancing the under-
standing of their relationships [5], [6]. Typical HFR models
follow a hierarchical architecture, with early designs featuring
tree structures where leaf nodes represent specific classes and
internal nodes indicate broader categories [41], [42], [43].
Recent research leverages components such as knowledge
graphs [12] and hierarchical prompting [44], as well as strate-
gies like self-paced learning [45], to improve the capability of
the model to learn hierarchical relationships.

Although these approaches demonstrate the potential of
hierarchical classification in fully supervised learning contexts,
a gap remains in applying such methods without relying on
instance-level annotations in the MIL framework. For example,
Mercan et al. [7] employed a traditional max-pooling MIL
approach constrained by a multi-label loss for breast cancer
WSI classification, where the instances were regions of interest
identified by pathologists. Lin et al. [8] explored cervical
cancer screening on cytology WSIs using DPNet based on
VGG-16 [46]. A hierarchical grouping loss is proposed for
suspicious cell detection, and the detected instances were
aggregated with fixed clinical rules at the bag level. Gao
et al. [9] proposed a multi-task framework for the classification
of leukemia bone marrow. This framework utilizes the label
hierarchy and introduces the information bottleneck achieved
through contrastive methods on the instances [47], [48]. Addi-
tionally, their approach leverages an instance-level auxiliary
classifiers to enrich feature representation, aiming to improve
classification accuracy. However, this method relies heavily
on expert annotations, with each bag containing a relatively
small number of pre-selected instances, which does not reflect
the tens of thousands of instances typically involved in WSIs.
Additionally, the neglect of alignment at the bag level restricts
the capture of complex cellular features.
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Fig. 2. Overview of the proposed HMIL. We use fine-grained cervical cancer classification as an example. Patched WSI is fed into an offline feature
extractor for the coarse features of the WSI, followed by an online feature re-embedding module that produces fine-grained feature. Subsequently,
a dual-branch MIL architecture performs attention extraction and classification tasks at different hierarchical levels, with hierarchical alignment applied
to instance and bag levels. Fully connected layers are then employed on top of the aggregated features in each branch to predict classification logits.
Specifically, in the fine-grained branch, we incorporate supervised contrastive learning to further refine the feature representation. Finally, a dynamic
weighting training strategy is incorporated to regulate the weights of these two branches throughout network training.

III. METHOD

In this section, we first review the MIL paradigm and then
highlight the distinctions of our method. We then introduce
our HMIL framework, as illustrated in Figure 2.

A. Preliminary

1) The MIL Paradigm: From the perspective of MIL, a WSI
X is considered a bag, while its patches are considered
instances within this bag, represented as X = {X i }

Ni
i=1. The

number of instances Ni varies for different bags. For a binary
classification task, there is a known label Y for a bag and
an unknown label yi for each of its instances. If there is at
least one positive instance in a bag, then the bag is labeled as
positive; otherwise, it is labeled as negative. The goal of a MIL
model is to predict the bag label using all instances. As stated
in the introduction, the MIL prediction process can be divided
into three steps: instance feature extraction, aggregation, and
bag classification, as follows:

Ŷ = h
(

g
(
{ f (X i )}

Ni
i=1

))
(1)

where f (·), g(·), and h(·) denote the instance feature extractor,
aggregator, and bag classifier, respectively.

2) Hierarchical Classification for MIL: Hierarchical classifi-
cation not only considers the presence of certain instances,
but also leverages the predefined hierarchical mapping M(·)

reflecting the relationships between hierarchical labels to
enhance classification performance. For a WSI bag X , its
corresponding bag label Y = (Yc, Y f ), where Yc = M(Y f ),
represents the coarse-grained and fine-grained hierarchical
labels, respectively. Each hierarchy contains Kc and K f
classes. Under this setting, existing methods [8], [9] primarily
leverage this mapping M at the instance level and requires
instance annotation. In response, we advocate for using this

mapping at both the instance and bag levels, while exploring
the model’s capability without instance annotations.

B. The Hierarchical MIL Framework
Our HMIL framework operates in a dual-branch hierarchical

structure with a coarse branch and a fine branch. By leveraging
label hierarchy comprehensively, we anticipate our framework
not only learns from the broad categories provided by coarse
labels but also effectively refines its predictions by focusing on
the specific details and variations present in fine-level classes,
enabling accurate fine-grained classification of WSIs.

1) Hierarchical Feature Extraction: Given a WSI X tiled into
Ni instances, a pretrained encoder serves as an offline feature
extractor (OFE), extracting coarse-grained feature vector hc
with an embedded dimension of dc. However, due to the differ-
ences in granularity required for specific classification tasks,
it is necessary to re-embed these features. To address this,
we leverage a non-linear multi-layer perceptron (MLP) serving
as our online feature re-embedder (OFR) to re-embed these
coarse-grained features into fine-grained feature vector h f .
The dimensionality reduction to d f = dc/4 is designed to
refine the feature space and force the model to learn more
discriminative features in a reduced feature space, thereby
enhancing its ability to capture intricate patterns relevant to
the classification task.

2) Primal Hierarchical Guidance: With the introduction of
hierarchical labels, primal hierarchical guidance can be estab-
lished by leveraging the classification loss. Based on these
class-level probabilities, the objective functions for classifica-
tion in the different hierarchies are defined using cross-entropy
loss: L(c, f )

ce = −
∑Kc, f

i=1 Yi log(Ŷi ), where Y is the true label,
Ŷ is the predicted probability distribution, and Kc, f is the
number of classes. The overall classification loss is then
defined as: Lcls = L(c)

ce + L( f )
ce . By applying this loss for
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coarse and fine classifications, we anticipate that it will provide
foundational knowledge for the model to distinguish different
subtypes of cancers.

3) Holistic Hierarchical Alignment: Despite hierarchical clas-
sification losses provide basic guidance to the framework,
relying solely on these losses overlooks the hierarchical
relationships between categories. Without additional design
considerations, priors from the coarse branch may introduce
noise into fine-grained classification due to semantic misalign-
ment. To address this, we introduce a holistic hierarchical
alignment at both the instance and bag levels using a pre-
defined hierarchical mapping matrix M ∈ RK f ×Kc , based on
hierarchical relationships specified by pathologists. M maps
fine categories to coarse categories, where each element mi, j
is 1 if the fine-grained subtype Y f is a subtype of the coarse
category Yc, and 0 otherwise. This hierarchical alignment
enables the model to semantically align features in the fine
branch with those in the coarse branch, enhancing its ability
to differentiate between nuanced cancer subtypes.

a) Hierarchical alignment at instance level: At the instance
level, our hierarchical alignment is achieved through the
hierarchical attention matching (HAM) module. Recognizing
the importance of hierarchical mapping, we employ class-wise
attention learning instead of direct attention learning in our
HAM module to effectively leverage the predefined mapping
matrix M. Specifically, we assess the contributions of the
instances to the bag by utilizing the gated attention mecha-
nism [49] to learn the class-wise contributions of each instance
within its respective hierarchy. The class-wise attention scores
are computed as follows:

A{c,f} = softmax(W{c,f}(tanh(V{c1,f1}(h{c, f }))

⊙ sigmoid(V{c2,f2}(h{c, f })))) (2)

here, Ac ∈ RKc×Ni and Af ∈ RK f ×Ni represent the
instance attentions across classes at the coarse and fine levels,
respectively. The fully connected (FC) layers Vc1, Vc2, Wc
and Vf1, Vf2, Wf are designed with output dimensions of
dc/4, dc/4, Kc and d f /4, d f /4, K f respectively. This class-
wise attention learning within each hierarchy allows the model
to selectively emphasize more informative feature from the
patches, enhancing the discriminative capability of the model
across different levels of hierarchy.

After obtaining class-wise attention at each hierarchy,
we match the learned attention Ac, Af in our HAM module
by aggregating the attention logits for corresponding classes
as dictated by the mapping matrix M. The alignment intro-
duces an instance-specific coarse-to-fine constraint via a loss
function defined as:

Lia =
1
Ni

(1 − cos(Ai,c,MAi,f )) (3)

where cos denotes the cosine similarity, and the mapping
matrix M translates fine-grained attention scores into the
coarse-grained hierarchy. This strategic alignment ensure the
fine-level learning does not deviate into incorrect or irrelevant
feature spaces that do not align with the broader category
defined at the coarse level.

b) Hierarchical alignment at bag level : At the bag level,
alignment is centered on ensuring that predictions made at
the fine level are meaningfully translatable back to the coarse
level through the hierarchical bag alignment (HBA). We firstly
obtain the prediction by utilizing attention pooling operations
to aggregate class-wise instance-level features into bag-level
representations, guided by the attention matrices Ac and Af :
B{c,f} = A{c,f}

⊤
× h{c, f }, where × denotes matrix multipli-

cation, Bc ∈ RKc×dc and Bf ∈ RK f ×d f denote the bag-level
representations at the coarse and fine levels, respectively. Sub-
sequently, HMIL utilizes the bag-level representations from
both hierarchy levels to compute the slide-level probabilities:
p{c, f } = softmax(cls{c, f }(B{c,f})). In this formulation, pc
and p f represent the probabilities that X is classified into
coarse and fine categories, respectively. These probabilities
are determined by the classifiers clsc and cls f , which consist
of FC layers. The classifications for X at both levels are
obtained through Ŷ = (Ŷc, Ŷ f ), where Ŷc = argmax(pc) and
Ŷ f = argmax(p f ).

In HBA, given the fine-grained logits p f , the mapping
matrix M is employed to align the bag-level logits with their
coarser counterparts can be expressed in a form analogous to
the cross-entropy loss as follows:

Lba = −

Kc∑
i=1

Y (c)
i log(Ỹ (c)

i ), (4)

where Y (c)
i is the true label for coarse category i , and Ỹ (c)

=

Mp f represents the predicted coarse probabilities derived
from the fine probabilities through the mapping matrix M.
By enforcing the hierarchical alignment, the model is com-
pelled to prevent the misinterpretation of fine-grained feature,
and enhancing the overall accuracy of the classification.

4) Supervised Contrastive Learning: With the introduction
of hierarchical alignment, given that fine-grained classification
of WSI necessitates differentiating subtle variations inherent
in gigapixel resolutions, which are characterized by high sim-
ilarity between classes and significant intra-class variability.
To further enhance the discriminative capability of the fine-
grained bag-level feature, we apply supervised contrastive
loss [13] in a batch b to the ℓ2-normalized fine-grained bag-
level feature B f , as defined by the equation below:

Lreg =

b∑
i=1

−
1

|Pi |

∑
Bp,f ∈Pi

log
exp

(
Bi,f · Bp,f

⊤/τ
)∑

Bo,f ∈Vi
exp

(
Bi,f · Bo,f

⊤/τ
)
(5)

where Vi =
{
Bi,f

}
i∈[b]

\
{
Bi,f

}
denotes the set of cur-

rent batch feature at the fine branch, excluding Bi,f . Set
Pi =

{
Bj,f ∈ Vi : Y j, f = Yi, f

}
comprises feature within the

fine branch that share the same fine-grained label. The
temperature hyperparameter τ is set to 0.1 following the liter-
ature [31], [50], with ablation studies detailed in Sect. IV-C4.
This constraint improves the discriminative ability of fine-
grained features by bringing embeddings of the same class
closer together and pushing those of different classes further
apart.
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C. Training Strategy and Overall Loss Function
To design the overall loss function, we recognize that

the coarse branch’s broad knowledge is insufficient for fine-
grained classification due to differences in feature hierarchies.
Inspired by [51] and [52], which use dynamic weighting to
balance loss components based on task relevance, we propose
our dynamic weighting strategy. Initially, we emphasize coarse
classification and alignment losses to improve fine-grained
classification, as we believe the coarse classification task is
inherently less complex. As training progresses, we shift our
focus toward the fine branch’s supervised contrastive learning
to enhance feature representation in the fine branch as follows:

L = β · (L(c)
ce + Lia + Lba) + (1 − β) · Lreg + L( f )

ce (6)

where β = 1 −
e
E is a dynamically adjusting weighting

coefficient, with E as the total number of epochs and e as the
current epoch. Further details on parameter ablation studies
can be found in IV-C4.

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics
To assess the robustness and clinical applicability of

our framework, we employed three datasets: two publicly
available histology WSI datasets, namely BRACS [14] and
PANDA [15], along with our own collected cytology WSI
dataset for cervical cancer screening, termed CCC. The details
of the datasets are described as follows.

The BReAst Carcinoma Subtyping (BRACS) dataset is
designed for breast cancer subtyping and comprises 547 his-
tology WSIs. The dataset’s labels are organized into a
hierarchical structure to facilitate both coarse and fine-grained
classification: at the coarse level, labels include benign tumors
(BT), atypical tumors (AT), and malignant tumors (MT); at the
fine level, labels are normal (N), pathological benign (PB),
usual ductal hyperplasia (UDH), flat epithelial atypia (FEA),
atypical ductal hyperplasia (ADH), ductal carcinoma in situ
(DCIS), and invasive carcinoma (IC). Given the dataset’s
limited size, we employ a 10-fold cross-validation protocol.

The Prostate cANcer graDe Assessment (PANDA) dataset
includes 10,616 histological WSIs of prostate biopsies, each
annotated with a single label to indicate its normal status
or corresponding ISUP (International Society of Urological
Pathology) grade. Given the absence of the label hierarchy
within the original dataset, we manually introduced coarse-
level labels by mapping ISUP grades to risk categories as
per the European Association of Urology (EAU) guidelines
for prostate cancer [53]. Specifically, WSIs categorized as
normal or with an ISUP grade of 1 were assigned to the
low-risk group. Those with an ISUP grade of 2-3 were
classified as intermediate-risk, and biopsies with a grade of
4-5 were designated as high-risk. The original ISUP grades
were retained as fine-level labels. A 10-fold cross-validation
protocol was employed for both the training and testing phases.

Our in-house Cervical Cytological Carcinoma (CCC)
dataset comprises 33,528 WSIs, collected from multiple medi-
cal centers. This dataset adheres to the Bethesda System (TBS)
[54] for cervical cytology classification, which delineates a

range of cytological findings in the following hierarchical
structure: labels include negative for intraepithelial lesion or
malignancy (NILM) for specimens without cytological abnor-
malities, and five categories for positive findings: atypical
squamous cells of undetermined significance (ASC-US), atyp-
ical squamous cells that cannot exclude high-grade squamous
intraepithelial lesion (ASC-H), low-grade squamous intraep-
ithelial lesion (LSIL), high-grade squamous intraepithelial
lesion (HSIL), and squamous cell carcinoma (SCC). For
benchmarking, the dataset was randomly divided into training,
validation, and test sets at a ratio of 7:1:2 and employs non-
parametric bootstrapping using 1,000 bootstrap replicates for
testing to ensure the robustness of our evaluation.

The detail of the hierarchical mapping and sub-class dis-
tributions of these datasets can be referred to Figure 3.
To evaluate the classification performance of our datasets,
we use a consistent set of metrics across different WSI clas-
sification tasks. Specifically, we report the metrics including
accuracy, specificity, sensitivity, F1 score, and area under the
curve (AUC) computed in a one-versus-rest manner.

B. Compared Baselines and Implementation Details
We present the experimental results of our proposed HMIL

framework compared to the following methods: (1) Con-
ventional instance-level Multiple Instance Learning (MIL),
which includes Mean-Pooling MIL and Max-Pooling MIL.
(2) The standard attention-based MIL, ABMIL [33]. (3) Four
variants of ABMIL: the contrastive learning pretraining-based
non-local attention pooling DSMIL [26], the single-attention-
branch with clustering capability CLAM-SB [34], its multi-
branch counterpart CLAM-MB [34], and the multi-branch
attention-challenging ACMIL [35]. (4) Two transformer-based
MIL architectures: TransMIL [39] and the multi-resolution
pretraining-based HIPT [27]. (5) Pseudo bag augmented
MIL, which includes double-tier augmented bag distillation
DTFD [36] and mixup-based bag augmentation PseMix [37].
(6) Prototype-based metric learning MIL, PMIL [28]. (7) State
space model-based MIL, S4MIL [40]. We faithfully reproduce
these methods according to their official implementations.

During the preprocessing phase, we applied Otsu’s thresh-
olding method [55] to identify and delineate tissue regions
for generating patches. Except for the DSMIL, HIPT, and
PMIL methods, which used different patching strategies as
specified in their original publications, we produced non-
overlapping patches of 512 ×512 pixels at 20× magnification
for the PANDA and BRACS datasets. For cytology WSIs,
to accommodate varying resolutions across different imaging
instruments, we standardized the images to a 20× magnifica-
tion (0.2578 µm/pixel) and generated non-overlapping patches
of 1, 024 × 1, 024 pixels. Following the studies in [34],
[39], and [36], we employed ResNet-50 [56] as the offline
feature extractor, except where DSMIL [26], HIPT [27], and
PMIL [28] required different feature extractors according
to their original papers. Specifically, DSMIL employs Sim-
CLR [50] as the feature extractor and extracts features at 5×

and 20× resolution with tiled patches of 224 × 224 pixels.
HIPT employs the DINO [57] approach and pretrains two
vision transformer feature extractors at different resolutions,
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Fig. 3. Hierarchical mappings and sub-class distributions in BRACS [14], PANDA [15] and our collected CCC datasets. The mappings are from the
original datasets designed by pathologists.

TABLE I
EVALUATION OF PERFORMANCE ON THE HISTOLOGY WSI DATASETS BRACS. WE REPORT THE RESULTS IN THE FORM OF MEANSTD .

THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY

TABLE II
EVALUATION OF PERFORMANCE ON THE HISTOLOGY WSI DATASETS PANDA. WE REPORT THE RESULTS IN THE FORM OF MEANSTD .

THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY

generating tiled patches of 256× 256 and 4, 096 × 4, 096 pix-
els. We utilized the provided pretrained weights from the
original work for the evaluation. PMIL finetunes ResNet-
34 [56] feature extractor using vocabulary-based prototype
learning on the training split and generates tiled patches of
256 × 256 pixels.

The experiments were conducted on a workstation with
NVIDIA RTX 3090 GPUs using the Adam optimizer with
a weight decay of 1 × 10−5. Training lasted for 200 epochs,
during which the best results were saved. For the CCC and

PANDA datasets, the learning rate was 1 × 10−3 with a batch
size of b = 512. For the BRACS dataset, the learning rate was
1 × 10−4 with a batch size of b = 128.

C. Experiment Results and Ablation Studies

1) Fine-Grained Classification: We evaluated the proposed
HMIL in fine-grained WSI classification tasks and summarized
the results in the left part of Tables I-III. From the results,
it is observed our proposed HMIL outperforms all compared
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TABLE III
PERFORMANCE EVALUATION ON THE CYTOLOGY WSI DATASET CCC. WE REPORT THE RESULTS IN THE FORM OF MEANSTD .

THE BEST AND SECOND BEST RESULTS ARE HIGHLIGHTED IN RED AND BLUE, RESPECTIVELY

methods in terms of accuracy, specificity, sensitivity, F1 score,
and AUC, demonstrating its effectiveness in identifying subtle
differences and patterns within WSI images. Specifically,
in the histology BRACS dataset (Table I), HMIL achieved
the highest accuracy of 55.56 ± 5.92%, specificity of 91.21 ±

5.90%, sensitivity of 38.61 ± 6.02%, F1 score of 38.98 ±

7.21%, and AUC of 83.03 ± 2.85. Similarly, for the histol-
ogy PANDA dataset (Table II), HMIL demonstrated superior
performance with an accuracy of 63.41 ± 1.42%, specificity
of 92.42 ± 1.54%, sensitivity of 58.36 ± 1.57%, F1 score of
58.16±1.70%, and AUC of 89.43±0.27%. Lastly, in the CCC
dataset (Table III), which is more challenging inferred from the
metrics, HMIL outperformed other methods with an accuracy
of 80.25 ± 0.32%, specificity of 93.93 ± 0.12%, sensitivity
of 40.97 ± 0.92%, F1 score of 44.39 ± 0.99%, and AUC of
91.24 ± 0.18%.

The quantitative results demonstrate that current MIL meth-
ods still face challenges in fine-grained classification tasks,
as indicated by the relatively low sensitivity metric. Methods
that rely solely on learning attention from each instance may
not be sufficient to discern subtle differences.

While the ABMIL method shows stability through attention-
based classification, more complex designs, such as CLAM-
SB and CLAM-MB, which utilize learned multi-branch
class-wise clusters, achieve no significant improvement com-
pared to their single-branch variant, CLAM-SB, and even
exhibit worse performance on the BRACS dataset. Data aug-
mentation approaches like DTFD and PseMix have improved
sensitivity, but at the cost of reduced specificity, and they have
not demonstrated significant advantages in enhancing overall
model performance. Both DSMIL and HIPT benefited from
their pretrained encoders. However, HIPT’s pretrained weights
are based on TCGA datasets [27], introducing significant
domain shift issues, while DSMIL has a relatively small
pretraining size and less effective aggregator, as highlighted in
the ablation studies in Sect. IV-C4. S4MIL, which leverages
state space model architecture, achieves nearly the second-best
performance but still falls short of the proposed HMIL. This
further underscores the advantage of the supervision provided
by label hierarchy in fine-grained WSI classification tasks.

2) Coarse-Grained Classification: We also explored whether
hierarchical alignment leads to mutual enhancement by
conducting coarse-grained classification experiments. HMIL
exhibits significant improvements compared to baseline meth-
ods. In the BRACS dataset (Table I), HMIL achieved an
accuracy of 64.07 ± 5.12%, specificity of 84.49 ± 4.28%,
sensitivity of 60.79 ± 5.13%, F1 score of 58.75 ± 5.21%, and
AUC of 87.66 ± 4.52%. In the PANDA dataset (Table II),
HMIL attained the highest accuracy of 77.23 ± 1.38%, speci-
ficity of 88.02 ± 0.77%, sensitivity of 73.08 ± 1.12%, F1
score of 73.50 ± 1.37%, and AUC of 90.25 ± 0.84. Finally,
for the CCC dataset (Table III), HMIL achieved an accuracy
of 91.44 ± 0.23%, specificity of 89.32 ± 0.27%, sensitivity
of 89.39 ± 0.81%, F1 score of 89.66 ± 0.90, and AUC of
95.88 ± 0.17.

These results confirm the utility of label hierarchy in
facilitating classification tasks at the coarse level. In coarse-
grained tasks, where features are more distinguishable, the
fine branch through hierarchical alignment serves to confirm
and refine feature representation, thereby enhancing overall
accuracy. Since the classification task is easier with fewer
categories to identify, methods with learned attention from
the instances like CLAM-MB, with its multi-branch class-wise
clusters, show improved performance compared to their single-
branch variant, CLAM-SB. Other methods also show varying
degrees of improvement. However, they still fall short of our
HMIL. This consistent performance across different datasets
underscores the versatility and effectiveness of HMIL.

3) Class-Wise Performance Visualization: We present the
class-wise AUC distribution and bag feature visualization for
the top-performing methods in Figures 4 and 5. From the
class-wise AUC distributions, a notable observation is that
although pretraining methods like DSMIL and HIPT exhibit
high overall performance, they tend to perform better on
classes with larger sample sizes. In contrast, the other baselines
yield more balanced results, particularly S4MIL. Nevertheless,
our method not only achieves a more balanced performance
but also demonstrates superior overall results, which we
attribute to the contextual guidance provided by hierarchical
context.

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on June 25,2025 at 11:59:52 UTC from IEEE Xplore.  Restrictions apply. 



1804 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 44, NO. 4, APRIL 2025

Fig. 4. The class-wise AUC distribution of top-performing methods on BRACS (Top), PANDA (Middle), and CCC (Bottom) datasets.

To observe and visualize the effectiveness of feature repre-
sentation, we employ the t-SNE method [58] to visualize the
learned bag features B{c,f} at each branch of HMIL. Addi-
tionally, we compare the feature representation capabilities of
ABMIL, DSMIL, and HIPT in coarse- and fine-grained WSI
classification using the PANDA and CCC datasets, as these
datasets provide a sufficient sample size for effective visu-
alization. In the results for the PANDA dataset, the upper
section illustrates that ABMIL exhibits minimal clustering
and lacks distinct separation among coarse-grained categories.
In contrast, HIPT and DSMIL, having benefited from pre-
training, show improved feature representation; however, some
degree of overlap persists in their clustering. Notably, HMIL
leverages contextual guidance to achieve a significantly clearer
separation among coarse-grained categories, underscoring its
effectiveness in distinguishing between different risk levels.
When we examine fine-grained classifications, the challenges
become more pronounced. DSMIL and HIPT exhibit signifi-
cant overlap in fine-grained tasks, highlighting the challenges
of classification. In contrast, HMIL demonstrates a better abil-
ity to distinguish between different ISUP categories. Similar
observations are noted within the cytology CCC dataset, which
presents even greater challenges for classification, reinforcing
the consistency of our findings. Collectively, these results
underscore the superior feature representation capabilities of
HMIL in both coarse and fine-grained classifications, partic-
ularly in addressing the complexities inherent in fine-grained
tasks. This positions HMIL as a particularly effective model
for managing intricate datasets.

4) Ablation Studies: To further study the efficacy of our
HMIL architecture, as illustrated in Figure 6, we conduct a
comprehensive analysis using the test set of the three evaluated

datasets and report the results in terms of AUC for one-versus-
rest classification scenarios.

a) Holistic hierarchical guidance matters in fine-grained WSI
classification: We first study the effectiveness of hierarchical
guidance at different MIL levels within our HMIL framework,
focusing on instance-level guidance via hierarchical attention
mapping (HAM), bag-level guidance via hierarchical bag
alignment (HBA), and their combination. From Table IV,
we note that starting with only the fine branch using a class-
wise attention learning mechanism, similar to ABMIL but
with added class-wise constraints, leads to degraded perfor-
mance. Without any guidance provided by the hierarchical
mapping, the performance become worser when a coarse
branch is added. While hierarchical instance-level guidance
offers moderate improvements, it remains inferior to the flat
fine branch model. In contrast, combining the coarse branch
with bag-level guidance surpasses the flat fine branch. The best
performance is achieved by integrating both instance-level and
bag-level guidance with the coarse branch, highlighting their
complementary strengths. These results underscore the impor-
tance of combining alignment strategies to capture hierarchical
relationships and enhance classification accuracy.

We next examine the contribution of our hierarchical feature
refinement (HFE) components, including the online feature
re-embedding (OFR) module, supervised contrastive learning
(SCL) at different branches, and the dynamic weighting (DW)
strategy upon the core model, which operates in dual-branch
with holistic hierarchical alignment, the results are summa-
rized in Table V.

From the results, we observe that the hierarchical fea-
ture refinement components each contribute to enhancing the
model’s performance. The OFR module improves feature
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Fig. 5. The t-SNE visualization on PANDA (top) and CCC (bottom) datasets. The upper section of each dataset displays coarse-grained classes,
while the lower section showcases fine-grained classes.

TABLE IV
EVALUATION OF HIERARCHICAL GUIDANCE ON MODEL

PERFORMANCE. ✓DENOTES APPLYING THE

CORRESPONDING MODULE TO THE MODEL.
BEST RESULTS ARE HIGHLIGHTED IN BOLD

representations for the fine branch, while the DW strategy
balances information from both branches. The SCL module
also provides performance gains. When combined, these com-
ponents work synergistically, with the highest performance
achieved when all three are used together, demonstrating

TABLE V
COMPARISON OF OUR APPROACH USING DIFFERENT COMBINATIONS

OF THE PROPOSED MODULES OFR, DW, AND SCL. ✓DENOTES

APPLYING THE CORRESPONDING MODULE TO THE MODEL.
SUBSCRIPTS f AND c DENOTE APPLYING THE SCL MODULE

TO THE FINE OR COARSE BRANCH, RESPECTIVELY. BEST

RESULTS ARE HIGHLIGHTED IN BOLD

their collective effectiveness in refining features and balanc-
ing information for superior classification performance. For
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Fig. 6. Ablation study conducted on the HMIL framework. The modules
and strategy involved in the study, namely HAM, HBA, OFR, SCL in
different branches, and DW, are delineated with dashed lines.

TABLE VI
ABLATION STUDIES OF THE PROPOSED HMIL FRAMEWORK FOR LOSS

FUNCTION, WITH THE BEST RESULTS HIGHLIGHTED IN BOLD

a comprehensive evaluation, we also applied SCL to the
coarse branch. Notably, the results did not show significant
improvement, suggesting that SCL is more effective in fine-
grained contexts. This further reinforces our understanding that
the primary benefits of SCL are realized when applied to the
fine branch.

Finally, we conducted ablation studies on loss function as
shown in Table VI to verify the effectiveness of our dynamic
weighting strategy based on the following loss function:

L = a · (L( f )
ce + Lia + Lba) + b · Lreg + L(c)

ce (7)

The results indicate that the best performance is achieved
with a combination of dynamic weighting and proposed tem-
perature parameter highlighted in bold. Notably, the dynamic
weighting approach consistently outperforms static config-
urations, demonstrating its ability to enhance classification
accuracy across all datasets. This underscores the importance
of adaptive loss functions in optimizing model performance
within our HMIL framework.

b) Hierarchical guidance has mutual benifits: In addition
to fine-grained WSI classification, to comprehensively study
the effect of hierarchical alignment for coarse-grained WSI
classification, we also conduct an ablation study to explore
the hierarchical guidance at different MIL levels and the

TABLE VII
ABLATION STUDIES OF THE PROPOSED HMIL FRAMEWORK FOR

COARSE-GRAINED CANCER SUBTYPING TASK, WITH

THE BEST RESULTS HIGHLIGHTED IN BOLD

TABLE VIII
COMPARISON FOR FINE-GRAINED CERVICAL CANCER CLASSIFICATION

TASK, WITH THE BEST RESULTS HIGHLIGHTED IN BOLD

effectiveness of HFE components as detailed in Table VII.
It should be noted that under this setting, models with DW
strategy utilize the following loss function, which concentrat-
ing on the coarse branch, for balancing the knowledge from
each branch:

L = β · (L( f )
ce + Lia + Lba) + (1 − β) · Lreg + L(c)

ce (8)

From the results, we observe that introducing the fine
branch without applying any alignment strategies already leads
to a noticeable improvement in the performance of coarse-
grained classification. Adding specific alignment and feature
enhancement strategies results in only slight improvements,
indicating that the network is already capable of effectively
discerning features under coarse classification conditions.

c) Hierarchical guidance efficiently enhances fine-grained WSI
classification: Moreover, we compared methods relying on
instance-level annotations to reveal the efficiency of our pro-
posed framework in the task of fine-grained WSI classification
of cervical cancer. We utilized the instance-level annotation of
our CCC dataset, which containing 18,314 ROIs with 41,402
annotations in 5,332 WSIs in the training set. Following the
original works of [8], [18], and [21], we reproduce these
methods and present the results in Table VIII.

From the results, we observed that our method has com-
parable performance to methods that rely on instance-level
annotations, underscoring its efficiency. Specifically, Lin’s
method, equipped with a simple VGG-based detector and rule-
based aggregation methods, even falls short of ABMIL, which
does not rely on instance-level annotations. This indicates
that reliance on instance-level annotations does not neces-
sarily guarantee superior performance. On the other hand,
Cheng and Zhang’s methods both utilize several instance-
level models to refine the results from the initial detector
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and achieve better performance. However, these methods
come with the significant drawback of requiring instance
annotations in various forms, which are time-consuming and
labor-intensive to gather. DSMIL, while utilizing pretrained
features, shows limited performance improvement and reduced
sensitivity, indicating that pretraining encoders on a rela-
tively small dataset may not be sufficient. Furthermore, when
it directly leverages features extracted from the ImageNet-
pretrained encoder, performance drops significantly, indicating
that the non-local aggregator may not be ideally suited for
fine-grained WSI classification tasks. In contrast, our HMIL
framework comprehensively integrates hierarchical guidance
into the MIL framework and achieves state-of-the-art per-
formance, which underscores the technical path of reducing
reliance on instance-level annotations to improve fine-grained
WSI classification performance.

V. DISCUSSION AND CONCLUSION

Our experiments demonstrate the efficacy of hierarchical
alignment in enhancing both fine-grained and coarse-grained
WSI classification through class-wise attention learning. How-
ever, the limitations in fine-grained classification sensitivity
necessitate further investigation. At the feature extraction
stage, recent pathology foundation models which pretrained
on extensive pathological datasets [59], [60], [61], offer poten-
tial for more representative feature extraction and semantic
interpretation. Integrating these models into our hierarchical
framework or implementing hierarchical pretraining tech-
niques [62] may potentially improve the current classification
performance. At feature aggregation stage, state-space model-
based approaches have exhibited encouraging results in MIL
applications through their superior sequence modeling capabil-
ities. Future research should explore incorporating hierarchical
guidance into these architectures [40], [63], [64]. Moreover,
addressing domain bias arising from imaging artifacts and
tissue variations through domain adaptation and debiasing
techniques is crucial for model robustness and generalizability
across heterogeneous imaging modalities [65]. These insights
underscore the synergistic importance of hierarchical guid-
ance and domain adaptation in advancing WSI classification
methodology.

In this work, we introduced the HMIL framework,
an approach that leverages label hierarchy into the MIL
framework to address the fine-grained WSI classification task.
HMIL comprehensively aligns features from the instance to
the bag level. The framework further incorporates dynamic
weighting and supervised contrastive learning, which refine
slide-level representations, resulting in improved classification
outcomes. Crucially, HMIL eliminates the need for extensive
instance-level annotations. It demonstrates robust performance
across various WSI datasets from different imaging modalities,
including the publicly available histology datasets BRACS
and PANDA, as well as our extensive cervical cytology WSI
dataset CCC, underscoring its effectiveness and adaptability.

REFERENCES

[1] R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer statistics,
2022,” CA, Cancer J. Clinicians, vol. 72, no. 1, pp. 7–33, Jan. 2022.

[2] M. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M. Rajpoot,
and B. Yener, “Histopathological image analysis: A review,” IEEE Rev.
Biomed. Eng., vol. 2, pp. 147–171, 2009.

[3] J. G. Elmore et al., “Diagnostic concordance among pathologists inter-
preting breast biopsy specimens,” J. Amer. Med. Assoc., vol. 313, no. 11,
pp. 1122–1132, Mar. 2015.

[4] C. Jin, Z. Guo, Y. Lin, L. Luo, and H. Chen, “Label-efficient deep
learning in medical image analysis: Challenges and future directions,”
2023, arXiv:2303.12484.

[5] C. N. Silla Jr. and A. A. Freitas, “A survey of hierarchical classifica-
tion across different application domains,” Data Min. Knowl. Discov.,
vol. 22, no. 1, pp. 31–72, 2011.

[6] X. Ran, Y. Xi, Y. Lu, X. Wang, and Z. Lu, “Comprehensive survey on
hierarchical clustering algorithms and the recent developments,” Artif.
Intell. Rev., vol. 56, no. 8, pp. 8219–8264, Aug. 2023.

[7] C. Mercan, S. Aksoy, E. Mercan, L. G. Shapiro, D. L. Weaver,
and J. G. Elmore, “Multi-instance multi-label learning for multi-class
classification of whole slide breast histopathology images,” IEEE Trans.
Med. Imag., vol. 37, no. 1, pp. 316–325, Jan. 2018.

[8] H. Lin, H. Chen, X. Wang, Q. Wang, L. Wang, and P.-A. Heng, “Dual-
path network with synergistic grouping loss and evidence driven risk
stratification for whole slide cervical image analysis,” Med. Image Anal.,
vol. 69, Apr. 2021, Art. no. 101955.

[9] Z. Gao et al., “Childhood leukemia classification via information bottle-
neck enhanced hierarchical multi-instance learning,” IEEE Trans. Med.
Imag., vol. 42, no. 8, pp. 2348–2359, Aug. 2023.

[10] M. Nauta, R. van Bree, and C. Seifert, “Neural prototype trees for
interpretable fine-grained image recognition,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit. (CVPR), Jun. 2021, pp. 14933–14943.

[11] J. Chen, P. Wang, J. Liu, and Y. Qian, “Label relation graphs enhanced
hierarchical residual network for hierarchical multi-granularity classi-
fication,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2022, pp. 4848–4857.

[12] R. Zhou, J. Wei, Q. Zhang, R. Qi, X. Yang, and C. Li, “Multi-granularity
archaeological dating of Chinese bronze dings based on a knowledge-
guided relation graph,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2023, pp. 3103–3113.

[13] P. Khosla et al., “Supervised contrastive learning,” in Proc. NIPS, 2020,
pp. 18661–18673.

[14] N. Brancati et al., “BRACS: A dataset for BReAst carcinoma sub-
typing in H&E histology images,” Database, vol. 2022, Oct. 2022,
Art. no. baac093.

[15] W. Bulten et al., “Artificial intelligence for diagnosis and Gleason
grading of prostate cancer: The PANDA challenge,” Nature Med.,
vol. 28, no. 1, pp. 154–163, 2022.

[16] D. Wang, A. Khosla, R. Gargeya, H. Irshad, and A. H. Beck,
“Deep learning for identifying metastatic breast cancer,” 2016,
arXiv:1606.05718.

[17] P. Bándi et al., “From detection of individual metastases to classification
of lymph node status at the patient level: The CAMELYON17 chal-
lenge,” IEEE Trans. Med. Imag., vol. 38, no. 2, pp. 550–560, Feb. 2019.

[18] S. Cheng et al., “Robust whole slide image analysis for cervical cancer
screening using deep learning,” Nature Commun., vol. 12, no. 1, p. 5639,
Sep. 2021.

[19] W. Zaremba, I. Sutskever, and O. Vinyals, “Recurrent neural network
regularization,” 2014, arXiv:1409.2329.

[20] L. Cao et al., “A novel attention-guided convolutional network for the
detection of abnormal cervical cells in cervical cancer screening,” Med.
Image Anal., vol. 73, Oct. 2021, Art. no. 102197.

[21] X. Zhang et al., “Whole slide cervical cancer screening using graph
attention network and supervised contrastive learning,” in Proc. Int.
Conf. Med. Image Comput. Comput.-Assist. Intervent. Cham, Switzer-
land: Springer, Jan. 2022, pp. 202–211.

[22] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in Proc. IEEE Int. Conf. Comput. Vis. (ICCV),
Oct. 2017, pp. 2980–2988.

[23] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,” in
Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp. 7132–7141.
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