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A B S T R A C T

Pansharpening is about fusing a high spatial resolution panchromatic image with a simultaneously acquired
multispectral image with lower spatial resolution. In this paper, we propose a Laplacian pyramid pansharpening
network architecture for accurately fusing a high spatial resolution panchromatic image and a low spatial
resolution multispectral image, aiming at getting a higher spatial resolution multispectral image. The proposed
architecture considers three aspects. First, we use the Laplacian pyramid method whose blur kernels are
designed according to the sensors’ modulation transfer functions to separate the images into multiple scales
for fully exploiting the crucial spatial information at different spatial scales. Second, we develop a fusion
convolutional neural network (FCNN) for each scale, combining them to form the final multi-scale network
architecture. Specifically, we use recursive layers for the FCNN to share parameters across and within pyramid
levels, thus significantly reducing the network parameters. Third, a total loss consisting of multiple across-
scale loss functions is employed for training, yielding higher accuracy. Extensive experimental results based
on quantitative and qualitative assessments exploiting benchmarking datasets demonstrate that the proposed
architecture outperforms state-of-the-art pansharpening methods. Code is available at https://github.com/
ChengJin-git/LPPN.
. Introduction

Thanks to a wide range of applications, such as medicine [1],
ociology [2], ecology [3], and other fields, pansharpening has drawn
oads of attention from the scientific community. This can be corrob-
rated by the organization of the data fusion contest from the IEEE
eoscience and Remote Sensing Society in 2006 [4] and a huge recent

iterature about this topic [5–7]. Pansharpening is about merging a
igh resolution panchromatic (PAN) and a low resolution multispectral
LRMS) images, which can be easily obtained by several satellite sen-
ors like WorldView-3, QuickBird, and GaoFen. As illustrated in Fig. 1,
he goal of pansharpening is to yield a high resolution multispectral
HRMS) image. Besides, pansharpening algorithms have gained much
nterest from commercial enterprises. For instance, famous software,
uch as ENVI and ERDAS, utilizes fusion techniques to deal with image
nhancement problems [8]. Moreover, pansharpening has been consid-
red a preliminary step for several image processing tasks, e.g., change
etection [9], which demonstrates the important role of pansharpening
n practical applications.
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emine.vivone@gmail.com (G. Vivone).

Regarding pansharpening algorithms, we may categorize them into
four classes, i.e., component substitution (CS) approaches,
multi-resolution analysis (MRA) methods, variational optimization-
based (VO) approaches, and deep learning-based (DL) techniques [7].
In this work, we mainly focus on developing a new deep learning
network to address the pansharpening problem.

The first two categories are CS and MRA methods which obtain the
final pansharpened outcome from the perspective of details injection,
see, e.g., [10,12–15]. The former approach is based on the substitution
of a component of the spectral transformed multispectral (MS) image
with the PAN image, see, e.g., the band-dependent spatial-detail with
local parameter estimation (BDSD) [10], the robust band-dependent
spatial-detail (BDSD-PC) [16], and the PRACS approach [12]. The MRA
class relies upon the injection of the spatial details of the PAN image
into the upsampled LRMS image to obtain a high spatial resolution
MS image, see, e.g., the smoothing filter-based intensity modulation
(SFIM) [17], the generalized Laplacian pyramid (GLP) [18–20], the
GLP with full-scale regression (GLP-Reg) [21], the deconvolution based
vailable online 30 September 2021
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Fig. 1. First row: the schematic diagram of pansharpening, where MS ∈ R𝑚×𝑛×𝑏,
PAN ∈ R𝑀×𝑁×1 and GT ∈ R𝑀×𝑁×𝑏, 𝑀 = 4 𝑚,𝑁 = 4𝑛, 𝑏 is the number of bands of
the MS image. Second row: the pansharpened results by a state-of-the-art traditional
method, BDSD [10], a deep learning approach, DMDNet [11], and the proposed method.
Third row: the residual maps between BDSD, DMDNet, the proposed approach, and
the ground-truth (GT). It is clear that our method obtains a better residual map, thus
showing a better visual quality.

methods [22,23], and the bilinear filtering [24]. Hybrid CS/MRA ap-
proaches can also be found in the related literature [14,25]. In general,
the two types of methods could get quite fast computation and promis-
ing outcomes, but, sometimes, may lead to slight spatial and spectral
distortions.

The third category, the so-called VO class, is based on the formula-
tion of models with proper regularizers to address the pansharpening
problem, then reconstructing the high-resolution outcomes by design-
ing algorithms for the given models. The whole process can be seen
from a mathematical point of view as the reconstruction of incom-
plete complementary observations of multi-channel data. In general,
it mainly contains Bayesian-, Sparse Reconstruction (SR)-, and Model-
based Optimization (MBO) techniques, whose generally utilizes the
regularization-based technique to address this challenge, see, e.g., [26–
32]. In [33], Ballester et al. proposed the P+XS method, which obtained
the spectral information for the fused image under the assumption that
the PAN image can be approximated as a linear combination of the
high resolution multispectral bands. In [34], Yokoya et al. employed
the coupled nonnegative matrix factorization (CNMF) unmixing to deal
with the pansharpening problem, which could produce high quality fu-
sion results, both spectrally and spatially. In [35], Deng et al. proposed
a reproducible kernel Hilbert space and Heaviside based framework to
address the task of pansharpening. Recently, Wu et al. in [36] proposed
a new DL-based VO scheme that could benefit from both traditional VO
methods and the outcome of DL-based approaches, thus getting both
competitive results and generalization ability. Especially, some recent
hyperspectral and multispectral image fusion approaches can be also
applied to the task of pansharpening, see e.g., [37,38]. More recently,
this field of pansharpening has evolved into more specific applications,
i.e., in cloud-contaminated circumstances [39], where X. Meng et al.
proposed a variational-based integrated pansharpening model specify-
ing in cloud contamination scenarios. Although VO-based techniques
can obtain competitive results, they are sometimes limited, e.g., the
use of many hyperparameters, the insufficient feature representation
159

and extraction that could result in spatial and spectral distortions.
The fourth category is represented by the DL-based methods, which
are mainly based on a feature extraction/representation phase, the
training of network parameters, and the testing on real-world data.
These methods are often far from a theoretical development and re-
quire enormous datasets to train the underlying parameters, but they
have been widespread used (including but not limited to image super-
resolution, pattern recognition, and image classification), often show-
ing state-of-the-art performance. In particular, many satisfactory results
have been obtained by deep learning networks for pansharpening [40–
44]. In [45] , Masi et al. employed first a convolutional neural network
(CNN) with three layers to deal with the task of multispectral image
pansharpening, obtaining excellent pansharpened results comparing
with traditional state-of-the-art approaches. In [46], Fu et al. developed
a deep CNN architecture with a high-pass filtering technique to fuse
the PAN and the LRMS images, which obtains state-of-the-art pansharp-
ening outcomes. Besides, He et al. [47] followed physical concepts to
design a CNN based method for pansharpening relied upon the spatial
detail injection framework. In [11], Fu et al. elaborated their high-pass
filtering network design with a grouped multiscale network structure.
In [48], Deng et al. proposed two network architectures, named CS-Net
and MRA-Net, respectively, according to the traditional CS and MRA
fusion equations. To limit the drawbacks of the two networks, they fur-
ther proposed a simple but effective fusion network, called FusionNet,
to yield state-of-the-art pansharpening outcomes. More recently, Gen-
erative Adversarial Networks (GAN) and unsupervised training have
teemed with the pansharpening field thanks to their novelty and power-
fulness. Literature like [49,50] demonstrates the promising features of
these method. For improving the effectiveness of these kinds of meth-
ods, the solutions mainly focus on two broad aspects. One is to make
more generalized datasets for network training, e.g. [51]. The other
mainly focuses on the amelioration of the network architecture, i.e., by
combining the aforementioned methods [52], utilizing new state-of-
the-art modules [53] and amalgamating mathematical knowledge into
neural network practice [54].

Although these methods have achieved excellent performance, there
is still room for improvement by considering the following points.
First of all, the multi-scale property plays an important role in reso-
lution enhancement applications, see, e.g., the image super-resolution
issue [55]. It is important to design more effective multi-scale net-
work architectures based on widely used multi-scale structures, see,
e.g., the state-of-the-art Laplacian pyramids. Second, for the specific
pansharpening problem, the Modulation Transfer Function (MTF) is a
reasonable way to describe the physical procedure of image capture,
thus its consideration in the datasets simulation is expected to get better
performance.

Motivated by the above-mentioned points, we propose, in this work,
a new network architecture that is able to deal with these aspects.
Hence, a novel Laplacian pyramid pansharpening network (LPPN) ar-
chitecture is considered. The given network accounts for both the image
multi-scale information and the sensors’ MTFs. To exploit the multi-
scale information, we use the Laplacian pyramid to decompose the
original PAN image and the upsampled LRMS image in several scales,
then designing the corresponding sub-networks for each image scale
and incorporating them into a fusion convolutional neural network
(FCNN). Due to the use of multi-scale sub-networks, the final loss
function is represented by a combination of multiple 𝓁2 loss functions.
Moreover, we also introduce recursive blocks into our sub-networks,
aiming to reduce the number of network parameters. Additionally,
unlike the classical Laplacian pyramid that uses a fixed Gaussian kernel
for all the image channels, our approach employs the specific sensors’
MTFs, which vary along the spectral dimension (i.e., different Gaussian
kernels for different spectral bands). Extensive experiments on reduced
and full resolution datasets demonstrate that the proposed method
gets the best quantitative and qualitative performance compared with
state-of-the-art pansharpening approaches.
The contributions of this paper can be summarized as follows:
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• To the best of our knowledge, this is the first work merging both
the recursive sub-network and Laplacian pyramids to address the
pansharpening task. Unlike the classical Laplacian pyramid using
a fixed Gaussian kernel for all the spectral channels, the Laplacian
pyramid used in our work takes advantage of the specific sensors’
MTFs for image scale decomposition, which can yield significant
improvements.

• The exploitation of Laplacian pyramids allow us to develop multi-
scale structured sub-networks improving the capability of man-
aging different spatial details at the feature extraction stage.
Besides, we also build multiple loss functions to describe the
information loss for each scale, which can aid the image details
recovery at different scales.

• The recursive block is used within each sub-network to effectively
decrease the number of network parameters. Furthermore, its use
can increase the depth of the sub-networks. Thus, the proposed
approach can be seen as a lightweight network for pansharp-
ening. For example, our method only involves about 50,000
network parameters to achieve the state-of-the-art performance
on WorldView-3 datasets, which is significantly far away from the
compared approaches.

The remaining of the paper is as follows. Firstly, the related works
nd motivations under the development of the proposed method are
eported in Section 2. Section 3 is devoted to the presentation of the
roposed method, including the network architecture, the loss function,
he training details, and so forth. Section 4 shows the quantitative and
ualitative outcomes. Finally, conclusions are drawn in Section 5.

. Related works and motivations

Laplacian pyramid decomposition (LPD) and its multi-scale struc-
ure, which are suitable for image resolution enhancement tasks. Re-
ently, some pansharpening algorithms are proposed from the perspec-
ive of constructing multi-scale structures, see, e.g., [56], obtaining
romising outcomes. For instance, Yuan et al. [57] formulated a novel
ansharpening approach by employing the multi-scale convolutional
ernels, which could fully widen the network and effectively extract
he image features on different scales. In [58], although the authors
entioned the words ‘‘Laplacian pyramid’’ in their work, they did
ot really exploit the multi-scale LPD for the task of pansharpening,
hich limited the final pansharpening performance. Different from

he introduced multi-scale methods, here we accordingly resort to the
lassical LPD with some special operations in pansharpening, e.g., LPD
ith MTF, to formulate an effective and lightweight deep CNN with
multi-scale structure, aiming to yield state-of-the-art pansharpening

esults. In this section, we will introduce first the Gaussian pyramid
ecomposition (GPD) and the related LPD. Afterwards, we will point
ut the motivations under the development of the proposed method.

.1. GPD and LPD

Proposed by H. Olkkonen et al. [59], the GPD is about the recon-
truction of the image by the Gaussian expand wavelet transform for
ulti-resolution analysis of images. It aims to use Gaussian kernels to

reate a series of images at different scales. The general GPD equation
s as follows:
𝑮1(𝑰) = 𝑰 ,

𝑮𝑖(𝑰) = (𝒌⊗𝑮𝑖−1(𝑰)) ↓2, 𝑖 = 2,… , 𝑆,
(1)

where 𝑮𝑖 stands for the 𝑖th layer of the Gaussian pyramid, 𝑰 is the
riginal image, ⊗ denotes the convolution operation, ↓2 indicates the
ownsampling with a scale factor of 2, 𝒌 represents the Gaussian kernel,
nd 𝑆 is the total number of layers. It is worth to be remarked that 𝒌
160

s fixed for each channel of an MS image. i
The LPD is a bandpass image decomposition derived from the GPD.
t is originally proposed by Burt and Adelson [60] before multiresolu-
ion wavelet analysis was introduced. More in detail, the LPD technique
s a multi-resolution image representation obtained through a recursive
eduction of the set of data.

The general LPD processing equation is as follows:

𝑳𝑆 (𝑰) = 𝑮𝑆 (𝑰),

𝑳𝑖(𝑰) = 𝑮𝑖(𝑰) −𝑮𝑖+1(𝑰) ↑2, 𝑖 = 𝑆 − 1,… , 1,
(2)

here 𝑳𝑖 stands for the 𝑖th layer of the LPD, 𝑮𝑖 is the outcome of the 𝑖th
ayer of the GPD, and ↑2 indicates the upsampling with a scale factor
f 2. Please, refer to Fig. 2 for a better understanding.

.2. Motivations

Since conventional deep learning networks do not often exploit
ulti-scale information, the proposed work is motivated by the intro-
uction of this kind of information. In particular, the pyramid structure
chieves a multi-scale representation in image processing to portray
lobal and local information in a better way. This property inspired
s to utilize the multi-scale spatial representation structure of the
PD to design an end-to-end deep neural network structure capable
f progressively restoring more image information to get a better
erformance.

It is important to note that conventional GPD methods mainly utilize
fixed Gaussian kernel for each channel of an MS image (e.g., an

GB image) to proceed with the convolution operation. However, this
pproach fails to meet the physics principles of pansharpening since the
S sensors’ point spread functions, which model the spatial responses

f each spectral channel (also called band), are not the same along the
pectral dimension. In other words, the Gaussian kernels related to the
pectral bands of an MS image should be different from each other.
hey are about a special function, i.e., the MTF. Thus, we exploit the
TF to generate the specific kernels for every band of the MS image in

rder to implement the GPD. For more details, the interesting readers
an refer to Section 3.1.1.

. The proposed method

In this section, we describe the design of the proposed LPPN. The
hole procedure is depicted in Fig. 3. The architecture of the network,

he adopted loss function, and the training details are introduced in the
emaining of this section. For simplicity, we denote the PAN image as

and the MS image as 𝑴 .

.1. Network architecture

This section is devoted to the detailed description of the proposed
etwork architecture.

.1.1. GPD with MTF
The Modulation Transfer Function (MTF) is used to model the mag-

itude response of the optical system at different spatial frequencies. In
ansharpening, it has widespread used to design filters for image degra-
ation. The sensors’ MTFs are usually band-dependent, thus generating
ilters that have different Gaussian kernels for each spectral band.
n this work, our goal is to address a resolution enhancement issue
nvolving natural images, thus motivating us to implement Laplacian
yramids using the MTF a priori information. For more details, the

nteresting readers can refer to [6,61].
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Fig. 2. Schematic diagram of the Gaussian pyramid decomposition (GPD) and the Laplacian pyramid decomposition (LPD) for 𝑆 = 5.
Fig. 3. The network architecture of the proposed Laplacian pyramid pansharpening network (LPPN) for a resolution ratio between PAN and MS equal to 4.
3.1.2. LPD with MTF
Multi-scale information is essential for image resolution enhance-

ment applications. Thus, we want to utilize the LPD, a well-established
technique for producing multi-scale images, to recover more image
details. In what follows, we will introduce our MTF LPD, which per-
forms first the MTF GPD into several scales of the original PAN image,
the upsampled LRMS image, and the ground-truth (GT) multispectral
image, thus getting the corresponding LPD components using (2).
161
To match the spatial resolution, we employ the transposed convolu-
tion to upsample 𝑴 with a factor 4 (denoted as 𝐌̃) to the PAN, 𝑷 , scale.
Then, we separately decompose 𝑷 and 𝐌̃ into their 𝑆-layer pyramids,
which is processed by the following procedure:

(a) We generate convolution kernels according to the MTF informa-
tion. 𝑷 and 𝐌̃ have corresponding MTF functions (readers can
find the kernels by having a look at the codes MTF-PAN and MTF,
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which are available in the pansharpening toolbox1). In particular,
the MTF kernel for 𝑷 is denoted as 𝒌𝑷 . Regarding to the 𝑏th band
of 𝐌̃, we separately indicate each band’s kernel as 𝒌1,𝒌2,… ,𝒌𝑏,
respectively.

(b) Compute the GPD with MTF for 𝑷 and 𝐌̃. Let 𝑮𝑖(𝑷 ), 𝑮𝑖(𝐌̃) denote
the MTF-decomposed PAN and upsampled LRMS images of the
𝑖th Gaussian pyramid layer (𝑖 = 1, 2,… , 𝑆), and set 𝑮1(𝑷 ) = 𝑷 ,
𝑮1(𝐌̃) = 𝐌̃. Afterwards, we respectively compute the output
image at each GPD layer for 𝑷

𝑮1(𝑷 ) = 𝑷 ,

𝑮𝑖(𝑷 ) = (𝒌𝑷 ⊗𝑮𝑖−1(𝑷 )) ↓2, 𝑖 = 2,… , 𝑆,
(3)

and for 𝐌̃

𝑮1(𝐌̃) = 𝐌̃,

𝑮𝑖(𝐌̃𝑗 ) = (𝒌𝑗 ⊗𝑮𝑖−1(𝐌̃𝑗 )) ↓2, 𝑖 = 2,… , 𝑆.
(4)

where ⊗ denotes the convolution operation, ↓2 stands for the
downsampling operation with a scale factor of 2, and 𝑗 = 1, 2,… , 𝑏
is the band index.

(c) Compute LPD with MTF for 𝑷 and 𝐌̃ based on the obtained GPD
in (3) and (4), i.e.

𝑳𝑆 (𝑷 ) = 𝑮𝑆 (𝑷 ),

𝑳𝑖(𝑷 ) = 𝑮𝑖(𝑷 ) −𝑮𝑖+1(𝑷 ) ↑2, 𝑖 = 𝑆 − 1,… , 1,
(5)

and
𝑳𝑆 (𝐌̃) = 𝑮𝑆 (𝐌̃),

𝑳𝑖(𝐌̃𝑗 ) = 𝑮𝑖(𝐌̃𝑗 ) −𝑮𝑖+1(𝐌̃𝑗 ) ↑2, 𝑖 = 𝑆 − 1,… , 1,
(6)

where ↑2 stands for the upsampling operation with a scale factor
of 2, and 𝑗 = 1, 2,… , 𝑏 is the band index.
More details about Laplacian pyramids can be found in [60].

In summary, the whole procedure of generating of our LPD with
MTF for 𝑷 and 𝐌̃ can be found in (5) and (6). Please, refer also to
Fig. 4 for the LPD and the GPD for 𝑷 and 𝐌̃.

3.1.3. Fusion Convolutional Neural Network (FCNN)
After getting the multi-scale LPD components of 𝑷 and 𝐌̃, we

consider them into the designed fusion convolutional neural network
(FCNN, denoted as 𝑵𝒆𝒕(𝑖)(𝜃) in Fig. 3) for each scale to extract fea-
tures. Thus, our final architecture is the combination of multiple sub-
networks.

More in detail, we concatenate first the 𝑳𝑖(𝑷 ) and 𝑳𝑖(𝐌̃) at the 𝑖th
layer of LPD, after taking them into account at the corresponding sub-
network 𝑵𝒆𝒕(𝑖)(𝜃) and producing the output. Furthermore, the output
is operated by the ReLU activation function and upsampled exploiting
a factor of 2. Finally, it is transmitted to the output of the next layer.

For each sub-network 𝑵𝒆𝒕(𝑖)(𝜃) (i.e., each FCNN), we mainly employ
the residual learning [62] and recursive blocks [63] for enhancing
the performance of the network, which separately play the role of
improving accuracy and reducing the number of parameters. Please,
see Fig. 5 for the structure of the FCNN. More details on the 𝑵𝒆𝒕(𝑖)(𝜃)
sub-network are pointed out as follows.

(a) Feature Extraction: The goal of this step is to acquire the feature
maps of the corresponding inputs. For higher layers, we take
fewer kernels. In this work, we apply 2𝑆−𝑖+1 kernels with a 3 × 3
size for convolution operations to the concatenated input.

(b) Recursive Blocks: To achieve the parameter reduction and improve
the accuracy, we employ several recursive blocks. As the gra-
dient vanishing and exploding in training of deep models, the
shared-source skip-connection residual learning is incorporated

1 http://openremotesensing.net/knowledgebase/a-critical-comparison-
mong-pansharpening-algorithms/.
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into our sub-network, whose accuracy is proven in [55]. The goal
of our recursive block setting is to share the network parame-
ters across each recursive block and between each convolutional
layer. Therefore, a single set of parameters is capable of building
multi-layer sub-networks.

(c) Output Reconstruction: After recursive blocks, the FCNN output for
each layer is integrated to reconstruct the multiple outputs, which
lead to multiple across-scale loss functions for training. In the
testing phase, we get multiple outputs and the sole output at the
first layer, i.e., 𝐎𝐮𝐭(1)(𝜃), represents the outcome of the proposed
approach.

Fig. 3 sums up the whole proposed architecture. It mainly includes
everal sub-networks to progressively fuse and enhance the spatial
etails. Please, see Fig. 6 to get more insights about how the proposed
etwork architecture works and its effectiveness on an exemplary
eal-world test case.

.2. Loss function

Due to the usage of the LPD, we will have multi-scale output images.
or each image, we build one FCNN to train the network parameters.
herefore, the final loss function is the combination of the different loss
unctions. The final loss function is defined as follows:

(𝜃(𝑖)) =
𝑆
∑

𝑖=1
‖𝐎𝐮𝐭(𝑖)(𝜃) −𝑮𝑖(𝑮𝑻 )‖2𝐹 , (7)

where 𝐎𝐮𝐭(𝑖)(𝜃) is obtained by 𝜃(𝑖)
(

𝑳𝑖(𝑷 ),𝑳𝑖(𝐌̃)
)

and its subsequent
operations (please see Fig. 3 for more details). In particular, 𝑖 indicates
the 𝑖th layer of LPD and 𝜃 stands for the network parameters. Besides,
𝑮𝑖(𝑮𝑻 ) is the 𝑖th layer of the GT image obtained via the GPD and ‖ ⋅‖𝐹
is the Frobenius norm. In this work, we empirically set 𝑆 equal to 5. It
is worth to be pointed out that in order to have a robust layer-by-layer
injection procedure, the use of multiple losses to constrain the distance
between the output image of a layer and the corresponding target (GT)
image is advisable and commonly used in the related literature. If the
loss function is only about the layer 1 (i.e., the final layer), the control
of each layer of the network could be not easy, making the training a
hard task. Moreover, although all the loss functions in (7) have equal
weights, the more the training time the higher the impact of the first
layer on the final solution.

3.3. Generation of training data

For the generation of training samples, we simulated three datasets
acquired from the WorldView-3, the QuickBird, and the Gaofen-2 sen-
sors. The simulation way for the three datasets is the same. We consider
here the WorldView-3 datasets as an exemplary case. The WorldView-3
satellite datasets can be freely downloaded.2 The same way as in [48]
is exploited to simulate the training/validation/testing datasets getting
12,580 PAN/LRMS/GT patch pairs of size 64 × 64, 16 × 16 × 8,
and 64 × 64 × 8, respectively. After that, these datasets are divided
into the 70/20/10% for training (8,806 examples)/validation (2,516
examples)/testing (1,258 examples). We simulate the LRMS, the PAN,
and the GT images according to Wald’s protocol [64] due to the
unavailability of the GT image. The upsampled LRMS image is obtained
via a polynomial kernel with 23 coefficients [18], called EXP from
hereon. Please, find more details on the implementation of Wald’s
protocol in [48].

2 https://www.maxar.com/product-samples/.

http://openremotesensing.net/knowledgebase/a-critical-comparison-among-pansharpening-algorithms/
http://openremotesensing.net/knowledgebase/a-critical-comparison-among-pansharpening-algorithms/
https://www.maxar.com/product-samples/
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Fig. 4. Detailed illustration of the generation of the 𝑖-th Laplacian pyramid layer of 𝐌̃ and 𝑷 (exploiting an exemplary WorldView-3 data with 𝑆 = 5 and resolution ratio between
the products to be fused equal to 4). 𝑮𝑖 represents the 𝑖-th layer of the Gaussian pyramid. Note that we do not use the classical Gaussian pyramid, rather we use MTF-based filters
to generate Laplacian pyramid layers.
Fig. 5. The flowchart of the fusion convolution neural network (FCNN). In which, the output channels are set as 2𝑆−𝑖+1, where 𝑆 represents the total number of LPD layers, and
the 𝑖 is the corresponding LPD layer number.
4. Experimental results

In this section, we compare the proposed LPPN method with some
recent state-of-the-art pansharpening approaches belonging to CS, MRA,
VO, and DL categories. The employed sensors, the benchmarking meth-
ods, and the adopted quality indexes are described first. Afterwards, the
experimental analysis both at reduced and full resolutions is reported.

4.1. Datasets

Several datasets have been acquired by the WorldView-3 sensor,
which simultaneously captures a high resolution PAN channel and eight
MS bands. Four standard colors (red, green, blue, and near-infrared 1)
and four new bands (coastal, yellow, red edge, and near-infrared 2)
are acquired. The images are distributed with a pixel size of 0.3 m and
1.2 m for PAN and MS, respectively. The spatial resolution ratio is equal
to 4. The radiometric resolution is 11 bits.
163
Fig. 6. The outputs of all the 𝑆 layers of our LPPN, i.e., 𝐎𝐮𝐭(𝑖)(𝜃), 𝑖 = 1, 2,… , 𝑆 (from
right to left) with 𝑆 = 5 on an exemplary real-world test case.

Different from WorldView-3, the images obtained by QuickBird and
GaoFen-2 sensors consist of four MS bands and one PAN channel. The
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Table 1
Details of experimental datasets.
Satellite Spatial Spectral Radiometric Themiatic Original data
Sensors Dimension Dimension Resolution Scenes Volume

WorldView-3 PAN 0.3 m One band 11 bits 6MS 1.2 m Eight bands mixed

QuickBird PAN 0.6 m One band 11 bits (urban, vegetation, 1MS 2.4 m Four bands water scenario)

GaoFen-2 PAN 1 m One band 10 bits 1MS 4 m Four bands
Table 2
Quality assessment at reduced resolution on 1258 WorldView-3 test cases. The mean and the standard deviation indexes are used to sum up
the obtained performance. Best results are in boldface.
Method SAM ERGAS SCC Q8 Qave A.T.

EXP 5.85 ± 1.99 7.04 ± 2.93 0.660 ± 0.106 0.627 ± 0.142 0.640 ± 0.157 0.016
BDSD 6.90 ± 2.73 5.15 ± 2.27 0.878 ± 0.075 0.817 ± 0.118 0.823 ± 0.119 0.019
CNMF 5.53 ± 1.88 4.62 ± 1.93 0.888 ± 0.068 0.822 ± 0.123 0.825 ± 0.125 0.035
GLP_CBD 5.29 ± 1.96 4.16 ± 1.77 0.890 ± 0.070 0.854 ± 0.114 0.849 ± 0.123 0.033
CVPR19 5.21 ± 1.87 5.14 ± 2.12 0.867 ± 0.604 0.793 ± 0.123 0.788 ± 0.130 1.731
DiCNN 4.25 ± 1.35 3.05 ± 1.06 0.945 ± 0.047 0.893 ± 0.118 0.908 ± 0.115 0.838
PanNet 4.10 ± 1.30 2.96 ± 1.00 0.949 ± 0.046 0.896 ± 0.116 0.910 ± 0.116 0.863
DMDNet 3.97 ± 1.25 2.86 ± 0.97 0.953 ± 0.045 0.900 ± 0.114 0.912 ± 0.115 0.951
LPPN 3.90 ± 1.29 2.64 ± 0.96 0.955 ± 0.045 0.913 ± 0.111 0.913 ± 0.114 0.977
spatial resolution ratio is equal to 4, again. In particular, QuickBird
and GaoFen-2 data have a spatial resolution of about 0.6 m and 1 m
for the PAN channel, respectively. Moreover, they have a radiometric
resolution of 11 bits and 10 bits, respectively. Please refer to Table 1
for the summary of the experimental datasets.

4.2. Benchmark

The benchmark consists of one representative CS based method (i.e.,
BDSD [10]), one representative MRA based methods (i.e.,
MTF_GLP_CBD [61], denoted as GLP_CBD from hereon for saving space
in the tables), two regularization-based (VO) methods (i.e., CNMF [34]
and CVPR19 [65]), and three state-of-the-art DL methods (i.e., Pan-
Net [46], DiCNN [47], and DMDNet [11]).3

For fair comparison, all the compared DL-based methods (i.e., LPPN,
iCNN, PanNet, and DMDNet) are trained on the same training data
sing Python 3.7.4 with Tensorflow 1.14.0 on a desktop computer
quipped with a Linux operating system and a GPU NVIDIA GeForce
TX 2080Ti with 11 GB.

.3. Quality assessment indexes

For quantitative evaluation, we adopt the spectral angle mapper
SAM) [66] to evaluate the spectral quality, the erreur relative globale
dimensionnelle de synthèse (ERGAS) index [67] as an extension of the
oot mean square error for multidimensional arrays, the spatial corre-
ation coefficient (SCC) [68] in order to assess the spatial quality, and
wo universal image quality indexes [69], Qavg (an average version of
he Q index along the spectral bands) and Q2𝑛 (Q4 and Q8 for four and
ight bands datasets, respectively) representing the multidimensional
xtension of the Q index [70,71]. These indexes can be used when a
eference (GT) image is available (i.e., at reduced resolution). Instead,
hen we need to assess the performance at full resolution, quality
ithout reference indexes should be used [72–74]. In this paper, the

3 The source codes of BDSD, GLP_CBD and CNMF can be downloaded
t the website http://openremotesensing.net/kb/codes/pansharpening/. Addi-
ionally, the source codes of CVPR19 and PanNet can be downloaded at the
ebsite https://xueyangfu.github.io/. Instead, the source codes of DiCNN and
MDNet are not available online, thus we re-implemented them by ourselves
sing the default parameters indicated in the related papers to ensure their
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est performance.
quality with no reference (QNR) [72] index is exploited. It is obtained
by the combination of the spatial distortion index, 𝐷𝑆 , and the spectral
distortion index, 𝐷𝜆. The ideal values for SCC, QNR, Qave, and Q4/Q8
are 1. Instead, for ERGAS, SAM, 𝐷𝜆, and 𝐷𝑆 are 0. Furthermore, we
exhibit the average running time for each fusion method, denoted as
A.T. in seconds in the results tables.

4.4. Parameters tuning

In our LPPN network, we empirically employ the Adam [75] ap-
proach with a learning rate equal to 0.003 in order to minimize the
loss function in (7). The number of iterations for the training step is
1 × 105 and the batch size is 32. Additionally, we set the kernel size of
all filters as 3 × 3. In particular, for the setting of the other compared
methods, we use the default asset pointing out in the related papers or
source codes. In the DiCNN case, the batch size is set to 64 and the
number of iterations is 3 × 105. Instead, for PanNet and DMDNet, the
batch size is set to 32 and the number of iterations is 255,000. Under
the use of the above-mentioned settings, the three methods can achieve
their best performance.

4.5. Reduced resolution assessment

In this section, we assess the qualitative and quantitative perfor-
mance of the compared methods on the reduced resolution datasets.
The process for simulating the testing data is the same as that of the
training data (see Section 3.3 for details). More in detail, the spatial
size of the testing PAN/LRMS/GT patch is 64×64, 16×16, and 64 × 64
for WorldView-3 datasets in Table 2. For Figs. 7–9, the testing images
for WorldView-3, QuickBird and GaoFen-2 cases are with the spatial
size of 256×256, 64×64, and 256 × 256, respectively. We tested the
compared approaches on a large dataset consisting of 1258 test cases
extracted from WorldView-3 data, and Table 2 exhibits the average
performance and the corresponding standard deviations for all the
compared methods. From Table 2, it can be readily got that our method
obtains high performance for all the quality indexes. We depict a typical
result in Fig. 7. It can be seen that BDSD and CNMF show greater spec-
tral distortion. GLP_CBD and CVPR19 have various blurring defects,
especially visible in the building area at the lower right corner. Fur-
thermore, the other three DL-based methods, i.e., PanNet, DMDNet and
DiCNN, exhibit competitive visual performance. However, they still fail
to outperform our method. To highlight the differences, we depicted

several magnified sub-regions among the compared methods. It is clear

http://openremotesensing.net/kb/codes/pansharpening/
https://xueyangfu.github.io/
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Table 3
Quality assessment at reduced resolution on 25 QuickBird test cases. The mean and the standard deviation indexes are used to sum up the
obtained performance. Best results are in boldface.
Method SAM ERGAS SCC Q4 Qave A.T.

EXP 7.27 ± 2.31 10.88 ± 2.77 0.530 ± 0.023 0.545 ± 0.139 0.540 ± 0.146 0.008
BDSD 6.71 ± 2.08 7.05 ± 1.12 0.840 ± 0.084 0.769 ± 0.178 0.761 ± 0.187 0.205
CNMF 6.34 ± 2.75 7.07 ± 2.77 0.771 ± 0.295 0.683 ± 0.281 0.680 ± 0.280 0.172
GLP_CBD 6.52 ± 1.96 6.91 ± 1.06 0.840 ± 0.085 0.779 ± 0.169 0.764 ± 0.185 0.036
CVPR19 6.84 ± 2.14 8.62 ± 1.86 0.815 ± 0.060 0.686 ± 0.171 0.676 ± 0.179 4.478
DiCNN 4.79 ± 1.09 5.06 ± 0.57 0.908 ± 0.067 0.835 ± 0.187 0.830 ± 0.194 0.868
PanNet 4.78 ± 1.07 4.80 ± 0.34 0.915 ± 0.078 0.841 ± 0.184 0.841 ± 0.188 0.887
DMDNet 4.61 ± 0.94 4.46 ± 0.29 0.919 ± 0.087 0.845 ± 0.193 0.845 ± 0.197 1.047
LPPN 4.39 ± 0.85 4.41 ± 0.50 0.937 ± 0.065 0.851 ± 0.185 0.848 ± 0.190 1.122
Table 4
Quality assessment at reduced resolution on 25 GaoFen-2 test cases. The mean and the standard deviation indexes are used to sum up the
obtained performance. Best results are in boldface.
Method SAM ERGAS SCC Q4 Qave A.T.

EXP 2.88 ± 0.47 3.58 ± 0.44 0.690 ± 0.047 0.760 ± 0.030 0.773 ± 0.032 0.017
BDSD 2.90 ± 0.43 2.53 ± 0.46 0.859 ± 0.054 0.873 ± 0.047 0.884 ± 0.042 0.019
CNMF 3.20 ± 0.56 2.74 ± 0.59 0.860 ± 0.055 0.852 ± 0.042 0.877 ± 0.044 0.455
GLP_CBD 2.83 ± 0.50 2.49 ± 0.44 0.852 ± 0.054 0.873 ± 0.042 0.877 ± 0.039 0.079
CVPR19 2.57 ± 0.44 2.76 ± 0.37 0.854 ± 0.041 0.861 ± 0.024 0.861 ± 0.024 9.037
DiCNN 1.77 ± 0.31 1.57 ± 0.20 0.943 ± 0.013 0.949 ± 0.015 0.953 ± 0.012 0.879
PanNet 1.65 ± 0.25 1.44 ± 0.12 0.955 ± 0.009 0.951 ± 0.022 0.963 ± 0.011 0.887
DMDNet 1.54 ± 0.24 1.32 ± 0.12 0.961 ± 0.009 0.956 ± 0.022 0.968 ± 0.012 1.049
LPPN 1.49 ± 0.20 1.18 ± 0.12 0.968 ± 0.007 0.968 ± 0.014 0.970 ± 0.015 1.129
Fig. 7. The visual comparisons on a reduced resolution WorldView-3 case (depicted bands: 1, 3 and 5). First two rows: The fusion results by means of BDSD, CNMF, GLP_CBD,
CVPR19, DiCNN, PanNet, DMDNet, and Proposed LPPN. Third and fourth rows: The corresponding residual maps using the GT image as reference. To aid the visual inspection,
we display the residual maps obtained by the analysis of the third spectral band.
that our method obtains the best visual performance, closer to the GT
image in spatial aspects, including sharper edges and clearer objects.
This can be observed in the lower right area of the sub-regions.(e.g., see
the orange roofs of the close-ups in Fig. 7). Moreover, we compute the
residual maps between the comparison candidates and the ground-truth
(GT) image. It is clear that the fusion image of the proposed approach
is closer to GT image, getting a residual map close to zero almost
everywhere. For average running time in all testing scenarios, EXP
method achieves the fastest time but the worst performance among the
compared methods. Concerning conventional methods, CVPR19 lasts
the longest for its iteration-heavy dependency. Regarding to DL-based
165
methods, DiCNN and PanNet get the best running times, followed by
the DMDNet and the proposed approach.

In order to corroborate the results obtained on the WorldView-3 test
cases, we assessed the performance of the compared approaches on data
acquired by the QuickBird sensor (Indianapolis datasets) and GaoFen-2
sensor (Beijing and Guangzhou datasets4). For the best performance,
we adjusted its output channels in the head of each FCNN to 2𝑆−𝑖+2 for
both datasets. The deep learning-based methods are properly trained

4 Datasets from: http://www.rscloudmart.com/dataProduct/sample.

http://www.rscloudmart.com/dataProduct/sample
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Fig. 8. The visual comparisons on a reduced resolution QuickBird case (depicted bands: 1, 2 and 3). First two rows: The fusion results by means of BDSD, CNMF, GLP_CBD,
CVPR19, DiCNN, PanNet, DMDNet, and Proposed LPPN. Third and fourth rows: The corresponding residual maps using the GT image as reference. To aid the visual inspection,
we display the residual maps obtained by the analysis of the second spectral band.
Fig. 9. The visual comparisons on a GaoFen-2 case (depicted bands: 1, 2 and 3). First two rows: The fusion results by means of BDSD, CNMF, GLP_CBD, CVPR19, DiCNN, PanNet,
DMDNet, and Proposed LPPN. Third and fourth rows: The corresponding residual maps using the GT image as reference. To aid the visual inspection, we display the residual maps
obtained by the analysis of the fourth spectral band.
on training data acquired by these sensors. Similar to WorldView-3
testing cases, we also compare the approaches on larger datasets of
256 × 256 spatial size consisting of 25 and 25 test cases extracted from
QuickBird and GaoFen-2 datasets, respectively. Tables 3 and 4 exhibit
the average performance and the corresponding standard deviations
for all the compared methods, and Figs. 8 and 9 show the typical cor-
responding performance of the compared methods. In the scenario of
166
the QuickBird sensor, BDSD and CNMF demonstrate acceptable visual
outcomes. However, GLP_CBD and CVPR19 still exhibit blurring defects
on the white roof-like object, thus decreasing the spatial performance.
For DL-based methods, the outcomes are still competitive. With the aid
of the residual maps, we can see our method outperforms the other DL-
based compared methods for its close degree of proximity to the GT
image. In the GaoFen-2 test case, BDSD and CNMF show acceptable
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Table 5
Quality assessment at full resolution on 200 WorldView-3 test cases. The mean and the
standard deviation indexes are used to sum up the obtained performance. Best results
are in boldface.

Method QNR 𝐷𝜆 𝐷𝑆 A.T.

EXP 0.913 ± 0.031 0.000 ± 0.000 0.086 ± 0.030 0.018
BDSD 0.893 ± 0.032 0.033 ± 0.013 0.077 ± 0.027 0.035
CNMF 0.896 ± 0.072 0.040 ± 0.037 0.067 ± 0.047 0.416
GLP_CBD 0.920 ± 0.050 0.028 ± 0.024 0.055 ± 0.032 0.079
CVPR19 0.932 ± 0.023 0.012 ± 0.006 0.057 ± 0.019 8.964
DiCNN 0.953 ± 0.036 0.018 ± 0.020 0.030 ± 0.020 0.861
PanNet 0.961 ± 0.021 0.019 ± 0.009 0.020 ± 0.012 0.886
DMDNet 0.960 ± 0.020 0.019 ± 0.010 0.021 ± 0.012 1.038
LPPN 0.963 ± 0.023 0.018 ± 0.012 1.089 ± 0.013 1.082

Table 6
Quality assessment at full resolution on 20 QuickBird test cases. The mean and the
standard deviation indexes are used to sum up the obtained performance. Best results
are in boldface.

Method QNR 𝐷𝜆 𝐷𝑆 A.T.

EXP 0.845 ± 0.026 0.000 ± 0.000 0.156 ± 0.026 0.008
BDSD 0.877 ± 0.029 0.034 ± 0.016 0.092 ± 0.036 0.025
CNMF 0.779 ± 0.072 0.076 ± 0.050 0.067 ± 0.047 0.144
GLP_CBD 0.832 ± 0.028 0.055 ± 0.013 0.012 ± 0.021 0.043
CVPR19 0.936 ± 0.013 0.008 ± 0.004 0.056 ± 0.012 4.539
DiCNN 0.910 ± 0.027 0.026 ± 0.009 0.065 ± 0.024 0.872
PanNet 0.943 ± 0.021 0.027 ± 0.008 0.031 ± 0.015 0.899
DMDNet 0.943 ± 0.020 0.024 ± 0.008 0.034 ± 0.014 1.051
LPPN 0.947 ± 0.004 0.025 ± 0.009 0.029 ± 0.007 1.132

Table 7
Quality assessment at full resolution on 20 GaoFen test cases. The mean and the
standard deviation indexes are used to sum up the obtained performance. Best results
are in boldface.

Method QNR 𝐷𝜆 𝐷𝑆 A.T.

EXP 0.860 ± 0.269 0.000 ± 0.000 0.140 ± 0.269 0.008
BDSD 0.882 ± 0.035 0.021 ± 0.014 0.099 ± 0.029 0.201
CNMF 0.779 ± 0.043 0.079 ± 0.030 0.067 ± 0.047 0.172
GLP_CBD 0.892 ± 0.037 0.048 ± 0.021 0.064 ± 0.021 0.034
CVPR19 0.832 ± 0.035 0.006 ± 0.005 0.163 ± 0.036 4.479
DiCNN 0.870 ± 0.027 0.033 ± 0.013 0.100 ± 0.022 0.873
PanNet 0.970 ± 0.007 0.012 ± 0.006 0.019 ± 0.008 0.881
DMDNet 0.969 ± 0.007 0.010 ± 0.006 0.021 ± 0.006 1.045
LPPN 0.970 ± 0.004 0.010 ± 0.005 0.018 ± 0.005 1.134

visual results, again. GLP_CBD and CVPR19 still suffer from spatial
distortion. However, in this case, the CNMF method demonstrates an
evident spectral distortion. For DL-based methods, we can observe
that our method yields better outcomes with the aid of the residual
maps. In both figures, the proposed LPPN clearly shows its spatial
advantages thanks to lower image residuals (see the close-ups in the
related figures), thus very high performance of the proposed LPPN
method can be easily observed.

4.6. Full resolution assessment

We also compare our LPPN approach with recent state-of-the-art
pansharpening approaches on full resolution WorldView-3, QuickBird
and GaoFen-2 data, whose PAN/LRMS patch is of spatial size 256 × 256
and 64 × 64, respectively. Due to the lack of a reference (GT) image,
the QNR index is used instead of the quality indexes in Section 4.5.
Tables 5–7 report the outcomes respectively on 200 real WorldView-
3, 20 real QuickBird and 20 GaoFen-2 examples, synthesizing them
using the mean and the standard deviation operators. It is worth to
be pointed out that the proposed method gets the best results related
to the overall quality index at full resolution, QNR. The other two
indexes, i.e., 𝐷𝜆 and 𝐷𝑆 , are also close to the approaches that get the
best performance. Moreover, we also show the visual comparison on
a full resolution WorldView-3 datasets in Fig. 10, in which the LPPN
167
Table 8
Performance assessment by varying the layer number of the proposed Laplacian
pyramid-based approach.

Layers SAM ERGAS SCC Q8 Qave

1 4.81 3.29 0.9584 0.9467 0.9480
2 4.54 3.18 0.9624 0.9496 0.9515
3 4.41 3.12 0.9627 0.9507 0.9520
4 4.40 3.11 0.9640 0.9509 0.9522
5 4.30 3.10 0.9657 0.9518 0.9536
6 4.52 3.16 0.9621 0.9506 0.9519

Table 9
Performance assessment by varying the FCNN structure.

Methods SAM ERGAS SCC Q8 Qave

Without recursive 4.83 3.54 0.9442 0.942 0.943
Fixed Gaussian kernel 4.66 3.21 0.9616 0.947 0.950
𝓁1 loss 4.51 3.18 0.9617 0.948 0.949
Proposed 4.30 3.10 0.9657 0.952 0.954

approach yields more image details and sharper image edges than the
compared methods.

4.7. Discussions

In this section, we will deeply discuss about the proposed architec-
ture (i.e., the number of Laplacian layers, the effect of recursive blocks,
the use of kernels, and loss functions) after comparing the convergence
of different fusion methods. Note that for the discussion of this part,
we take a WorldView-3 datasets (spatial size 256 × 256) as the test
example for the sake of brevity.

4.7.1. Convergence analysis
We utilize the mean squared error (MSE) loss on WorldView-3’s

8,806 training data to compare the different network convergence
among all the compared DL-based methods, i.e., DiCNN, PanNet, DMD-
Net and our LPPN architecture. As shown in Fig. 11, our network has
demonstrated a lower training error with less iterations.

4.7.2. The influence of the Laplacian pyramid layer number
A key parameter of Laplacian pyramids is the layer number. Since

the maximum spatial size of our training images is 64 × 64, 𝑆 can only
vary from 1 to 6. Using the datasets depicted in Fig. 7, the results of
our method by varying the layer number are reported in Table 8. It is
easy to show that the best performance can be obtained by the 5 layers
configuration, i.e. the one adopted in this paper.

4.7.3. FCNN structure discussion
After determining the network levels, we look at the sub-network

level, that is the FCNN. We studied several configurations of the FCNN.
In particular, we have:

(a) With recursive Vs. without recursive blocks: In order to inves-
tigate the effects of the recursive blocks, we substituted the
recursive blocks with ResNet [62] blocks in each FCNN, as
depicted in Fig. 12. Having a look at the first and fourth rows
in Table 9, it is straightforward that the proposed architecture
with recursive blocks generates better results than that of the
one without recursive blocks. Moreover, the amount of param-
eters related to the compared architectures is 174086 (without
recursive) against 50706 (with recursive), and the average usage
of GPU RAM is 1485 MB (without recursive) against 1453 MB
(with recursive), considering the test case depicted in Fig. 7, thus
demonstrating the reduction of the number of parameters under

the use of recursive blocks.
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Fig. 10. The visual comparisons on a full resolution WorldView-3 case (depicted bands: 1, 3, and 5).
Fig. 11. Convergence of compared DL-based methods.

(b) Fixed Gaussian Vs. MTF kernels: To verify our statement in Sec-
tion 3.1.1, we change the shape of the filters by using classical
fixed Gaussian kernel instead of MTF kernels to deal with the
generation of the Laplacian pyramid. Having a look at the second
and fourth rows Table 9, it is clear that the proposed architecture
with MTF-based kernels used for convolution obtains the best
quantitative performance.

(c) 𝓁1 Vs. 𝓁2 loss functions: We also consider the performance of
our network architecture with 𝓁1 and 𝓁2 loss functions. The
results shown in the third and fourth rows demonstrate that the
proposed 𝓁2 loss function is advisable.
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Table 10
Comparison of the number of parameters (NoPs) , total training time in seconds for all
the CNN-based methods.

DiCNN PanNet DMDNet LPPN

NoPs 1.5 × 105 2.5 × 105 3.1 × 105 𝟎.𝟓 × 𝟏𝟎𝟓

Time 𝟑.𝟕 × 𝟏𝟎𝟑 4.8 × 103 1.2 × 104 7.4 × 103

Table 11
Generalization ability assessment on the WorldView-2 dataset.

Method SAM ERGAS SCC Q4 Qave

EXP 8.24 8.88 0.4958 0.6468 0.6667
BDSD 8.42 6.30 0.7989 0.8400 0.8479
CNMF 7.41 6.29 0.8453 0.8298 0.8365
GLP_CBD 7.77 6.31 0.8046 0.8370 0.8390
CVPR19 7.30 6.89 0.8144 0.7882 0.7976
DiCNN 6.80 5.54 0.8680 0.8493 0.8658
PanNet 6.52 5.40 0.8588 0.8643 0.8785
DMDNet 6.37 5.22 0.8648 0.8707 0.8824
LPPN 6.50 5.38 0.8742 0.8641 0.8725

4.7.4. Generalization ability assessment
We also evaluate the generation ability of our network architecture

among the aforementioned fusion methods by utilizing WorldView-2
datasets, whose number of spectral bands are equal to the WorldView-
3 ones. The datasets can be freely downloaded from the same link as
for the WorldView-3 datasets. More in detail, the testing WorldView-
2 datasets have the PAN image of spatial size of 256 × 256 with a 4
PAN/MS spatial ratio. The outcomes are reported in Table 11. From the
table, we can see that albeit the performance of our method does not
outstrip the DMDNet, they are very close to the best. For the reason,
we believe that the high-pass filters employed by PanNet and DMDNet
efficiently extract more high-frequency features, which are crucial to
restore the original fused information.
Fig. 12. Altered ResNet block structure of the FCNN.
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4.7.5. Number of parameters and total training time assessment
Lastly, we compare the number of parameters and total training

time of the four DL-based algorithms. As a consequence of the use of the
recursive structure in each FCNN, our complexity significantly outper-
forms the one of the other methods. Table 10 shows the comparison
of the number of parameters (NoPs) for all the CNN methods on the
WorldView-3 datasets. From this table, it is clear that the proposed
LPPN method has only 0.5 × 105 parameters, which is significantly less
han the NoPs of DiCNN (1.8 × 105), PanNet (2.5 × 105), and DMDNet
3.2 × 105). To the best of our knowledge, the proposed LPPN is one
f the best lightweight network for pansharpening showing a small
oPs and also getting state-of-the-art performance. As for total training

ime, DiCNN method yields the shortest one. We believed the reason for
his is the relatively simple network structure, which only contains 3
onvolutional blocks and a skip-connection composition.

. Conclusions

In this paper, we proposed an efficient deep pyramid network
rchitecture for pansharpening. The network architecture consists of
hree parts. The first one is the decomposition of the input image set
nto Laplacian pyramids using MTF-based kernels. Afterwards, these
yramids are fused by the fusion convolutional neural network. Fi-
ally, we reconstruct the multi-layer outputs comparing them with
he reference (GT) data exploiting an 𝓁2 loss function in order to
rain the network. A broad experimental analysis demonstrates that
he proposed approach outperforms the compared state-of-the-art pan-
harpening methods. Furthermore, some discussions about the network
onvergence, the number of Laplacian pyramid layers, the influence
f the loss function, the use of recursive blocks, the generalization
bility and so forth, are provided to the readers. Finally, an analysis
n the number of parameters and total training time of the network
ointed out that our LPPN is a lightweight pansharpening network
etting state-of-the-art performance.
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