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ABSTRACT

In this paper, we propose a novel weighted shallow-deep
feature fusion convolutional neural network (WSDFNet) for
the task of multispectral image pansharpening. This network
could effectively overcome the drawback of the common
identity skip connection (ISC), and propagate shallow fea-
tures scaled by a novel adaptive skip weighter (ASW) to
deeper layers. By the technique, it could favor the feature
fusion in different network depths adequately, as well as yield
a promising outcome. Experimental results on reduced- and
full-resolution WorldView-3 dataset demonstrate the superi-
ority of the WSDFNet compared with recent state-of-the-art
(SOTA) pansharpening approaches. Moreover, WSDFNet is
also verified as a lightweight network.

Index Terms— Pansharpening, Convolutional Neural
Networks, Feature Fusion, Adaptive Skip Weighter

1. INTRODUCTION

Due to the rapid development of remote sensing image analy-
sis, pansharpening has become a hot topic and attracted more
attention in the scientific community. The goal of pansharp-
ening is to get a high spatial resolution multispectral image by
integrating high spatial resolution (HR) panchromatic (PAN)
image and low spatial resolution (LR) multispectral (MS)
image. At present, PAN and MS images are usually obtained
from the ground scenes taken by remote sensing satellites,
such as WorldView-3, QuikBird and GaoFen. Existing works
to solve the pansharpening can be divided into four cate-
gories [1]: component substitution (CS) [2], [3] approaches,
multi-resolution analysis (MRA) [4], [5] approaches, varia-
tional optimization (VO) [6] approaches, and deep learning
(DL) approaches [7], [8]. Especially, CS and MRA based
methods sometimes will lead to spatial and spectral distor-
tions. This would bring the distortions at the interface of each
operation. The methods based on the VO could get better
performance through prior knowledge or some image degra-
dation hypothesis. However, it is challenging to put forward
reasonable assumptions and determine the appropriate priors.
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Fig. 1. The visual comparison on a full resolution WorldView-3
dataset. First row: the original PAN image and the upsampled MS
images (also called EXP). Second row: the pansharpened image by
DMDNet [9] and WSDFNet.

Recently, with the gradual maturity of deep learning, the
methods based on convolutional neural networks (CNNSs) has
also been applied to the field of pansharpening. Due to its
powerful nonlinear and fitting abilities, the results obtained
by these methods have been significantly improved over tra-
ditional methods in terms of evaluation indicators and visual
perception. However, as most networks are designed based on
the residual block with ISC (e.g., PanNet [10], DMDNet [9]),
there is a limitation for these networks to fuse the shallow fea-
tures with the deep features, so that the shallow features are
not fully utilized. In other words, the features extracted by
the deep convolutional layers contain richer high-frequency
information, if only simply stacking the residual blocks with
ISC cannot effectively fuse the features extracted from shal-
low and deep convolutional layers. Thus, it motivates us to
develop a weighted shallow-deep feature fusion network for
pansharpening.

In this paper, we adopt an adaptive skip weighter (ASW)
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Fig. 2. The flowchart of WSDFNet. All involved convolution kernels in convolutional block (Conv Block) are with the size of 3 x 3 and 32
channels for simplicity. The related ASW and loss function can be found from Sec. 2.2 and Sec. 2.1.2.

to scale the shallow features for each residual block to fuse
the features in different depths in the network to tackle this
defect. The ASW could perform the feature fusion depending
on the different inputs adaptively, which finally results in the
so called WSDFNet.

The main contributions can be summarized as follows:

* A novel ASW module with a small amount of parame-
ters is designed to adaptively scale the shallow features
for each residual block so as to effectively fuse the fea-
tures between shallow and deep layers.

* WSDFNet achieves the SOTA pansharpening perfor-
mance, see Fig. 1. Especially, the given WSDFNet only
involves about 80, 000 network parameters, holding a
large gap compared with other DL-based methods, thus
can be viewed as a lightweight network.

2. THE PROPOSED METHOD

In this section, WSDFNet will be stated in detail. Please note
that in the following explanation, P € R”*Wx1 represents
the PAN image where the [/ and W donates the size of P in
spatial dimension, the MS € R4 x4 xb represents the LRMS
image where b donates number of the multispectral bands,
MS € RHXWxb jg upsampled MS obtained by a polynomial
kernel with 23 cofficients [11].

2.1. Network Architecture

2.1.1. Description of Network

The overall architecture of WSDFNet is shown in Fig. 2,
the MS concatenates with P to get a concatenated image I €

RHEXWx(b+1) " which will be sent to WSDFNet. First, I will
pass through a convolutional layer with the ReLU activation
to extract the first shallow feature, which denoted as X €
RHEXWXC where C' donates the channels of the convolu-
tional layer. After that, X will pass through several convo-
lutianal blocks with ASW, the details of ASW can refer to
Sec. 2.2. Finally, the output from the convolutional blocks
will add with MS to obtain the final output O € RH*Wxb,

2.1.2. Loss Function

To calculate the distance between the ground-truth (GT) im-
age and O, mean square error (MSE) is used as the loss func-
tion. It can be expressed as follows:

2

N

1 ) ) .

LO) =+ HJ-'(MS(”,P(“;@) ~GTY RN
i=1

where F(-) stands for the given WSDFNet with the parame-
ters ©, IV donates the amount of training examples, and ||-||
is the Frobenius norm.

2.2. Adaptive Skip Weighter

In this section, Fig. 3 shows the detailed structure of Adap-
tive Skip Weighter (ASW). From this figure, we consider an
identity feature X € RH*WxC a5 the input. A global average
pooling (GAP) layer is first exploited to sample the feature of
X, then the sampled feature is sent to the following two se-
quential steps: 1) the first fully connected (FC) layer with a
ReLU activation layer; 2) the second FC layer with a softmax
activation layer. Finally, the obtained weight W € R1*™ (m
represents the number of convolutional blocks) by the two FC
layers is respectively multiplied by X to generate the weighted
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Fig. 3. The illustration of ASW.

identity feature. Specifically, W could be expressed as fol-
lows,
W:[’U}l,wg,"' 7wm]a (2)

where w; represents the skip weight scaling X, and the ob-
tained w; - X will be integrated to the it" convolutional block,
see Fig. 2 for more details.

3. RESULTS AND DISCUSSION

In this section, the proposed WSDFNet will compare with
some recent SOTA pansharpening methods based on DL
(i.e., DICNNI [12], PanNet [10], DMDNet [9]) and some
traditional approaches based on the CS (i.e., BDSD [2],
PRACS [3]) or the MRA (i.e., CBD [4], SFIM [5]).

3.1. Dataset, Training details, and Parameters

All DL-based methods are fairly trained on the same dataset
captured by WorldView-3 (WV3) satellite, as GT images are
not available, thus Wald’s protocol [13] is performed to en-
sure the baseline image generation. The original dataset
can be download from the public website, and we ob-
tain 12,580 PAN/MS/GT image pairs (70%/20%/10% as
training/validation/testing dataset) with the size 64x64,
16x16x8, and 64 x 64 x 8 respectively by cropping the origi-
nal dataset.

Besides, all DL-based methods are trained on NVIDIA
GeForce GTX 2080Ti. For the parameters of our WSDFNet,
we set the learning rate as 3 X 10~4, epoch number as 500,
and batch size as 32. For the compared approaches, we use
the source code provided by the authors or re-implement the
code with the default parameters in the corresponding papers.

3.2. Quality Assessment

To verify the effectiveness of our WSDFNet, we conduct the
performance assessment on reduced resolution and full res-
olution. In the case of reduced resolution test, the relative
dimensionless global error in synthesis (ERGAS), the spec-
tral angle mapper (SAM), the spatial correlation coefficient
(SCC), and 8-band images (Q8) are used to assess the quality
of the results. In addition, to assess the performance of those
methods on full resolutions, the QNR, the D), and the D

Table 1. Average quantitative comparisons on 1258 reduced reso-
lution WorldView-3 examples.

Method SAM ERGAS scc 08
SFIM 5.452 £1.903  4.690 +6.574  0.866 + 0.067  0.798 £ 0.122
PRACS 5.580 £2.981 5.167 +1.854  0.866 + 0.081  0.813 £ 0.129
CBD 5.286 +1.958 4.163 +1.775  0.890 +0.070  0.854 £ 0.114
BDSD 7.000 £2.853  5.167 2.248 0.871 £0.080 0.813 £ 0.123
DiCNN1 3981 £ 1.318 2737 £1.016 0952+ 0.047 0.910£0.112
PanNet 4.092 +1.273 2952+ 0978 0949 £0.046  0.894 +0.117
DMDNet 3971 +£1.248 2.857+£0.966  0.953 +0.045 0913 £0.115
WSDFNet | 3.695 +1.226  2.544 + 0951  0.958 + 0.046  0.915 £ 0.112
Ideal value 0 0 1 1

Table 2. Average quantitative comparisons on 25 full resolution
WorldView-3 examples.

Method ONR Dy Dy
SFIM 0.934 £+ 0.016 0.022 £ 0.008 0.045 £ 0.010
PRACS 0.907 £ 0.024 0.020 =+ 0.006 0.075 £ 0.019
CBD 0.915 £ 0.024 0.028 £ 0.011 0.058 £ 0.015
BDSD 0.917 4+ 0.029 0.020 £ 0.012 0.064 £+ 0.022
DiCNN1 0.952 4+ 0.012 0.017 £ 0.006 0.031 £ 0.008
PanNet 0.951 £+ 0.010 0.031 £ 0.006 0.019 + 0.005
DMDNet 0.944 £ 0.015 0.027 £ 0.007 0.031 £ 0.010
WSDFNet 0.964 + 0.008 0.016 £ 0.005 0.020 +£ 0.005

Ideal value 1 0 0

Table 3. Results for WSDFNet with or without ASW (WSDFNet w/0).

Method SAM ERGAS scc 08
WSDFNet w/o 2.946 1.855 0.965 0.970
WSDFNet 2.798 1.735 0.972 0.973

indexes [14] are applied. The experimental results are sum-
marized in Table 1, Table 2 and Fig. 4.

Referring to the experimental results on reduced resolu-
tion and full resolution, it is evident that the proposed WS-
DFNet outperforms all the compared methods both in visual
and quantitative results. In general, the DL-based methods
perform significantly better than the traditional methods.
However, our WSDFNet has the best performance among
these methods based on DL. Especially, the given WSDFNet
also holds the smallest amount of parameters remarkably,
i.e., PanNet, DiCNN1, DMDNet and WSDFNet with the pa-
rameter amount of 2.5x10°, 1.8x10%, 3.2x10°, 0.8x10°,
respectively.

3.3. The Validity of ASW

To verify the validity of ASW, we conduct an experiment by
using the common ISC instead of the ASW while keeping all
the other settings unchanged. From Table 3, the common ISC
may weaken the original network performance for pansharp-
ening, which confirms the effectiveness of ASW.

4. CONCLUSION

In this paper, a novel weighted shallow-deep feature fusion
CNN (also called WSDFNet) was proposed for the multi-
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Fig. 4. First two rows: visual performance of compared approaches. Last two rows: the correponding residual maps.

spectral image pansharpening. Different from the simple
stack of residual blocks in general network structures, we
used weighted identical skip connection to fuse the features
extracted by the convolutional layers in different depths, and
designed an adaptive skip weighter to dynamically adjust the
importance of the features to the final fusion. It is worth men-
tioning that the proposed network is actually a lightweight
one. Experimental results verify the mentioned contributions
of the proposed WSDFNet.

5. REFERENCES

[1] G. Vivone et al., “A critical comparison among pansharpening

(7]

(8]

(9]

Transactions on Image Processing, vol. 27, no. 9, pp. 4330-
4344, 2018.

G. Masi, D. Cozzolino, L. Verdoliva, and G. Scarpa, ‘“Pan-
sharpening by convolutional neural networks,” Remote Sens-
ing, vol. 8, no. 7, pp. 594, 2016.

L. Deng, G. Vivone, C. Jin, and J. Chanussot, “Detail injection-
based deep convolutional neural networks for pansharpening,”
1IEEE Transactions on Geoscience and Remote Sensing, 2020.

X. Fu, W. Wang, Y. Huang, X. Ding, and J. Paisley, “Deep
multiscale detail networks for multiband spectral image sharp-
ening,” [EEE Trans. Neural Netw. Learn. Syst., 2020, early
access, doi: 10.1109/TNNLS.2020.2996498.

10] J. Yang, X. Fu, Y. Hu, Y. H , X. Ding, and J. Paisley, “Pan-
algorithms,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 5, L10] .ang g o Y. ang 'ne. an .als::)./ an
Pp. 2565-2586, 2015 net: A deep network architecture for pan-sharpening,” in Proc.
’ B ’ ’ IEEE Int. Conf. Comput. Vis. (ICCV), 2017, pp. 5449-5457.
[2] A. Garzelli, F. Nencini, and L. Capobianco, “Optimal MMSE . .. e
pan sharpening of very high resolution multispectral images,” (1] S.‘Baronn‘B. A“"‘Z?" L. Alparone and A, Garzelll,. Cf)ntext—
IEEE Trans. Geosci. Remote Sens., vol. 46, no. 1, pp. 228-236 driven fusion of high spatial and spectral resolution images
2008 ' ' v e ’ based on oversampled multiresolution analysis,” IEEE Trans-
(3] J Ch. Koy 1Y Ki A danti actions on Geoscience and Remote Sensing, vol. 40, no. 10, pp.
. 01, . Yu, an . 1m, “A new a aptlve component— 2300_2312, 2002.
substitution-based satellite image fusion by using partial re- 121 L He. Y. R Li b A Pl 7h dB. Li
placement,” [EEE Transactions on Geoscience and Remote [12] o e L. af)’ I .1’ J’C, ?n.ussf)t’ - Plaza, J. u‘, and B. L1,
Sensing, vol. 49, no. 1, pp. 295-309, 2010. Pansharpening via detail injection based convolutional neural
4l L Alpal’rone L ’VVald } Chanussot C Thomas. P. Gamba. and networks,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.,
: o > > > ’ vol. 12, no. 4, pp. 1188-1204, 2019.
L. Bruce , “Comparison of pansharpening algorithms: Out- . kP . . .
come of the 2006 GRS-S data-fusion contest,” IEEE Trans. [13] T. Ran.chm. and L. Wald, “Fusion of high spa?lal .and spectral
Geosci. Remote Sens., vol. 45, no. 10, pp. 3012-3021, 2007. r?SOI““I‘;}I; images: Tge AIESIS C"Sncept and 11“6161111’1"“116“‘3'
tion,” t . . t ing, vol. 66, no. 1, pp.
[5] J. Liu, “Smoothing filter-based intensity modulation: A spec- 4131—161 zoz)ggramm 8. Remoie Sensing, Vo no- % pp
tral preserve image fusion technique for improving spatial de- ] ’ ' ]
tails.” International Journal of Remote Sensing, vol. 21, no. [14] G. Vivone, L. Alparone, J. Chanussot, M. Mura, A. Garzelli,
18, pp. 3461-3472, 2000. G. Licciardi, R. Restaino and L. Wald, “A critical comparison
[6] L. Deng, G. Vivone, W. Guo, M. Dalla Mura, and J. Chanus- among pansharpening algorithms,” [EEE Transactions on Geo-
sot, “A variational pansharpening approach based on repro- ;%lf;we and Remote Sensing, vol. 33, no. 3, pp. 2565-2586,
ducible kernel hilbert space and heaviside function,” I[EEE ’
2635

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on October 20,2021 at 05:37:22 UTC from IEEE Xplore. Restrictions apply.



