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Computational pathology has advanced through foundationmodels, yet faces
challenges in multimodal integration and capturing whole-slide context. Cur-
rent approaches typically utilize either vision-only or image-caption data,
overlooking distinct insights from pathology reports and gene expression
profiles. Additionally, most models focus on patch-level analysis, failing to
capture comprehensive whole-slide patterns. Here we present mSTAR (Mul-
timodal Self-TAught PRetraining), the pathology foundation model that
incorporates three modalities: pathology slides, expert-created reports, and
gene expression data, within a unified framework. Our dataset includes 26,169
slide-level modality pairs across 32 cancer types, comprising over 116 million
patch images. This approach injects multimodal whole-slide context into
patch representations, expandingmodeling from single tomultiplemodalities
and from patch-level to slide-level analysis. Across oncological benchmark
spanning 97 tasks, mSTAR outperforms previous state-of-the-art models,
particularly in molecular prediction and multimodal tasks, revealing that
multimodal integration yields greater improvements than simply expanding
vision-only datasets.

The recent advancements in foundation models (FMs)1–5 for compu-
tational pathology (CPath) have demonstrated considerable progress
in an incredibly broad spectrum of clinical tasks, such as cancer
diagnosis, treatment and prognosis. Despite encouraging perfor-
mance in general-purposepathology foundationmodels, there are still
several unresolved challenges.

First, massive multimodal data in line with clinical practices is
under-utilized for pretraining, such as pathology reports and gene
expression profiles. Existing pathology FMs either focus on vision-
only2 or image-caption data1,3, in which the information provided by
captions is insufficient to provide whole slide context for authentic
slide-level oncological tasks although attempting to incorporate dif-
ferent modalities. The power of multimodal data has been repeatedly
substantiated not only in the general machine learning community6,7

but also in the field of medical cancer research8–10. In the clinical
workflow, as shown in Fig. 1a and examples in Supplementary Fig. 1,
pathology reports often provide the most clinically relevant informa-
tion of whole slides in real-world scenarios, while patients’ gene
expression profiles offer insights into quantitativemolecular dynamics
that can complement the qualitativemorphological viewprovidedby a
slide. The integration of these slide-levelmultimodal data can establish
a broad and holistic perspective, thereby undoubtedly enhancing the
capabilities of PFMs for various clinical tasks.

Second, existing efforts in pathology FMs are predominantly
aimed at the modeling of patch/ROI-level data1–3, leading to limited
contexts for slide-level oncological applications. Conventional models
typically treat individual patch images as independent samples for
pretraining a patch extractor, and subsequently employ multiple
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instance learning (MIL)11–13 to perform slide-level modeling based on
embeddedpatch features. Recent concurrentworks4,14 have attempted
to pretrain the slide-level FM, or incorporate gene data into the light-
weight slide aggregator pretraining15. However, pretraining a slide
aggregator on top of pre-extracted patch features from a fixed trained
patch extractor poses an inherent limitation that the quality of patch
features of the slide aggregator inevitably constrains the upper bound
of pretraining performance. Since slide-level multimodal self-
supervised signals fail to guide patch-level feature extraction, the
pretraining objectives’misalignment of these two independent stages
inevitably results in suboptimal performance. Furthermore, the light-
weight architecture of pretrained aggregators necessitated by effi-
ciently handling massive patches inherently limits their capacity to
absorb multimodal information during pretraining.

In this work, we integrate three complementary modalities for
pathology foundationmodels: pathology slides, specialized pathology
reports, and gene expression data. A collection of 26,169 slide-level
modality pairs from 10,275 patients across 32 cancer types (Fig. 1c-e) is
used to develop a whole-slide pretraining paradigm termed Multi-
modalSelf-TAught PRetraining (mSTAR, Figs. 1b and 2), encompassing
over 116 million pathological patch images. This approach leverages
slide-level contrastive learning to pretrain a slide aggregator, which is
then used to inject whole-slide contextual information into a patch
feature extractor. The model is evaluated on a spectrum of 97 clinical
tasks across 15 application types (Fig. 1f-g and Supplementary Table 1),
including molecular prediction, report generation, and multimodal
fusion. Results (Fig. 1h) indicate that incorporatingmultiplemodalities
during pretraining enhances performance across tasks related to the
respective modalities and can achieve competitive outcomes with less
data than vision-only models requiring larger-scale slide datasets.

Results
The overview of mSTAR
The proposed mSTAR aims to provide a novel whole-slide pretraining
paradigm that injects multimodal knowledge into the pathology
foundation model. Compared with existing pathology foundation
models, mSTAR has the following innovative designs to fully unleash
its power in a wide spectrum of pathological downstream tasks. First,
clinical multimodal data are fully harnessed in pretraining to endow
the pathology FM with multimodal knowledge for comprehensive
perspectives in clinical tasks. Second, the whole-slide pretraining
paradigm provides an alternative way to obtain whole-slide contexts
for pathology FMs through self-taught training. To the best of our
knowledge, this is the first work to inject multimodal knowledge at the
whole-slide context into a pathology FM, broadening the contextual
understanding for CPath from patch-level to slide-level and from
unimodal to multimodal knowledge. The overview of mSTAR is shown
in Fig. 2, consisting of two stages of pretraining.

In the first stage, the objective is to injectmultimodal knowledge
into the slide aggregator by slide-level contrastive learning among
three modalities, i.e., WSIs, pathology reports and RNA-Seq profiles.
Note that the pretrained slide aggregator will act as a bridge that
propagates multimodal knowledge into the patch extractor in the
next stage. To this end, as shown in Fig. 2a, we first utilized a pre-
trained patch extractor, a state-of-the-art pathology foundation
model named UNI2, to encode each patch image of a slide into patch
features. Then the resulting patch features are fed into a slide
aggregator and integrated into a slide-level representation which is
subsequently aligned with other modalities through inter-modality
contrastive learning. Furthermore, to mitigate the influence of het-
erogeneity across different types of cancers, the pretraining of the
slide aggregator is also supervised by inter-cancer contrastive
learning. This approach brings samples of the same cancer type
closer together while concurrently pushing samples of different
cancer types apart.

In the second stage, the pretrained slide aggregator acquiring
multimodal knowledge, can serve as the teacher model to seamlessly
propagate multimodal knowledge at the slide-level context into the
patch extractor, called Self-Taught Training (Fig. 2b). Specifically, the
patch extractor is pretrained through encouraging the extracted patch
features to be as similar as possible to those re-embedded by the
pretrained aggregator. At the same time, to avoid catastrophic for-
getting, we also enforce a similarity constraint between the extracted
features and those embedded by the exponential moving average
(EMA) patch extractor.

With these two stages, multimodal knowledge at the whole-slide
context can be seamlessly embedded into foundation models. As a
result, themodel acquires the ability to comprehend both patches and
the entireWSI, which facilitates downstream tasks atdifferent levels. In
the end, the pathology foundation model can achieve advanced abil-
itieswith the extended context frompatch-level to slide-level and from
unimodal to multimodal knowledge. More details of mSTAR can be
found in Section 4.2.

Pathological diagnosis
We start with evaluating the pathological diagnostic capabilities based
on pathological morphology, including pathological subtyping,
metastasis detection, morphology prediction, pathological grading
and pathological staging. These tasks commonly appear in pathology
reports, forming a fundamental component of such reports and thus
holding significant clinical importance. To evaluate these tasks, we
collected 21 datasets from both publicly available and institutional
sources consisting for 3 types of evaluation strategies, i.e., 8 inde-
pendent cohorts on the 7:1:2 split, 3 held-out cohorts that are TCGA
data held out from pretraining data and 10 external cohorts for
testing only.

Specifically, for pathological subtyping task, we include breast
cancer on BRCA-PathSubtype16 as a held-out cohort, brain tumor on
GBMLGG_PathSubtype16 as a held-out cohort and EBrains_PathSubtype17

as an external cohort, head andneck cancer onHANCOCK_PathSubtype18

as an independent cohort, gastric cancer NFGC_PathSubtype, YN1_Path-
Subtype and YN3_PathSubtype as 3 external cohorts, lung cancer on
TCGA-NSCLC16 as a held-out cohort and Lauren classification of gastric
cancer on NFGC_Lauren and YN3_Lauren as two external cohorts,
resulting in 3 held-out, one independent and 6 external cohorts. For
metastasis detection task, we perform breast metastasis detection on
CAMELYON19,20 as an independent cohort, lung metastasis detection on
NF_Metastatic as an independent cohort and QFS_Metastatic as an
external cohort, and meanwhile we further predict their primary loca-
tions on NF_Metastatic_Fine as an independent cohort and QFS_Metas-
tatic_Fine as an external cohort. For morphology prediction, we assess
whether perineural invasion is present on NFGC_Perineural as an inde-
pendent cohort and YN3_Perineural as an external cohort, while we
evaluate whether vascular invasion is present on NFGC_Vascular as an
independent cohort and YN3_Vascular as an external cohort. Addition-
ally, we evaluate pathological grading on PANDA21 as an independent
cohort and pathological staging on HANCOCK-TStage18 as an indepen-
dent cohort. The task distribution for pathology diagnosis is demon-
strated in Fig. 3e, which covers common types of cancerous sites. The
details of every dataset are described in Section 4.3.

As baselines, we evaluate the recent pathology foundationmodels
(FMs) including PLIP 1, CONCH3, UNI2, CHIEF14 and GigaPath4 as well as
the classical R5022. To perform these tasks, following the standard
practice in computational pathology2, we used foundation models to
extract features from each patch and adopted attention-based multi-
ple instance learning (ABMIL)11 trained from scratch as the slide-level
aggregator to perform slide-level prediction. ABMIL is a simple yet
robust MIL approach, which is usually used for evaluation in previous
foundation model research2,3. In particular, CHIEF and GigaPath
claimed that their patch extractor should be used in conjunction with
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Fig. 1 | Overview of the study. a The workflow in clinical practice for diagnosis,
treatment and prognosis of oncology, which primarily involves three common
modalities data: WSIs, pathology reports and gene expression profiles. b The
overview of mSTAR paradigm. mSTAR consists of two stages: 1) Slide-level Con-
trastive Learning, and 2) Patch-level Self-Taught Training. c–e statistics of data used
in this study, including (c) Venn Graph of cases across various modalities, d the
number of cases in pretraining data across different cancer types. e the distribution
of word count for pathology reports. f evaluation scheme in this study: including
held-out, independent, external and zero-shot. The illustration is presented in Sec. ?
g the distribution of datasets across different types of tasks for different evaluation

scheme, and the detailed information about every dataset is presented in Supple-
mentary Table 1. h The average performance spanning 15 types of 97 tasks across 7
categories of applications: Pathological Diagnosis, Molecular Prediction, Report
Generation, Survival Prediction, Multimodal Fusion, Zero-shot Slide Classification,
and Zero-shot Slide Retrieval. Zero-shot tasks, which require a well-aligned vision-
language space, are evaluated for vision-language models only, i.e., PLIP, CONCH
and mSTAR. Source data are provided as a Source Data file and presented in Sup-
plementary Table 2 as well. This figure was created in BioRender. Zhou, Z. (https://
BioRender.com/r035ixv).
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their pretrained aggregator. Therefore, we finetuned their pretrained
aggregator paired with their extracted features on every downstream
dataset to ensure the best performance.

All comparisons are based on the metric of Macro-AUC, a com-
monly used and objective classificationmetric, which does not rely on
the selection of the decision threshold and is insensitive to the sample
ratio of various classes. To examine statistical differences between
mSTAR and the second-best FMs, the one-sidedWilcoxon signed-rank
test was performed on various datasets.

From an overall perspective, we assessed the average perfor-
mance for mSTAR and compared foundation models across 21
diverse datasets. The overall result demonstrates that mSTAR
achieved the best performance with a +1.37% increase overall
(P < 0.001) compared to the second-best model, UNI, as shown in
Fig. 3a. Compared with slide-level FMs, mSTAR obtained +3.31%
(P < 0.001) performance gain over GigaPath, the best slide-level

baseline. From the perspective of consistency, mSTAR stood out on
18 out of 21 datasets, ranking at the first place. To evaluate the gen-
eralizability, we assessed 8 independent datasets and 10 external
datasets. For independent cohorts, mSTAR demonstrates about +1%
improvement (P < 0.01) compared to the second-best FM and +2.32%
increase (P < 0.001) over GigaPath. It is worth noting that mSTAR
exhibits superior generalizable capability on external cohorts with
+2.14% improvement (P < 0.001) over the second-best FM, and
meanwhile exhibits +4.16% (P < 0.001) increase over GigaPath. For
held-out cohorts, mSTAR showcases performance comparable to
that of other FMs.

Pathological subtyping is of utmost importance in clinical
practice, as it forms the foundation for developing personalized
treatment plans and enhancing treatment effectiveness. Therefore,
we specifically evaluate mSTAR’s performance on such crucial tasks.
The overall performance across 10 datasets demonstrates +1.69%

Fig. 2 | The overview of mSTAR pipeline. mSTAR is a whole-slide pretraining
paradigm comprising two-stage pretraining. a Stage 1 aims to inject multimodal
knowledge into a slide aggregator by slide-level contrastive learning among WSIs,
pathology reports and gene expression data. b Stage 2 aims to seamlessly

propagatemultimodal knowledge learned at the slide level into the patch extractor
by Self-Taught training, which leverages the slide aggregator pretrained in Stage 1
as “Teacher” and enforces patch extractor to be “Student''. This figure was created
in BioRender. Zhou, Z. (https://BioRender.com/evctgc8).
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increase (P < 0.01) compared to the second-performing FM. Fur-
thermore, mSTAR shows significant improvement of +2.41%
(P < 0.01) on external cohorts, suggesting the strong generalizable
capability.

To validate whether the predictions of mSTAR align with clinical
understanding,wevisualize thepredicted attention scores frommSTAR
and compared the results with the given human-annotated ground-
truth ROI onCAMELYON and PANDAdatasets, as shown in Fig. 3h and i.

Fig. 3 | Performance of pathological diagnosis on 21 datasets. a The overall
performance on pathological diagnosis. b The performance on 8 independent
datasets. c The performance on 10 external datasets. The red lines and the values
reported at the top of figures (a, b and c) refer to the averaged performance across
datasets. Each point represents a dataset, with the size of the point indicating the
standard deviation. d The performance on 3 held-out datasets. The minima and
maxima bounds of boxes represent the minimum and maximum performance
among corresponding datasets, respectively. e Task distribution of pathological
diagnosis across sites for different evaluation. f The overall performance on

Pathological Subtyping across 10 datasets. g The performance on 6 external
datasets of Pathological Subtyping. Error bars represent standard errors across
datasets for all bar plots in (f–g). h, i The visualized validation of attention scores
from mSTAR on h) CAMELYON and i) PANDA datasets. P-value for every group of
experiments is given throughone-sidedWilcoxon signed-rank test betweenmSTAR
and the second-best FM. * represents P <0.05, ** means P <0.01 and *** indicates
P <0.001. Detailed Performances of every dataset are presented in Supplementary
Fig. 2 and Supplementary Table 7. Source data are provided as a Source Data file.
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From the results of Fig. 3h and i, we can see the areas of interest
formSTAR successfully matches with the ground truth. These indicate
mSTAR possesses intelligence for pathological diagnosis.

Molecular prediction
Molecular prediction has significant clinical implications in targeted
therapy and risk stratification, allowing for tailored treatment plans.
For example, HER2-positive breast cancer can be treated with HER2-
targeted drugs like trastuzumab23. However, unlike pathological
examination, genome sequencing remains largely inaccessible, espe-
cially in underdeveloped areas due to its high cost. Fortunately, with
the benefit of pretraining on the modality combination of WSIs and
gene expression data, mSTAR is more likely to possess a promising
capability of molecular prediction only based on easily accessible
pathological images. Therefore, in this study, we investigatemolecular
prediction solely based on pathological images for 3 categories of
crucial molecular tasks, including gene mutation prediction, immu-
nohistochemistry (IHC) biomarker prediction and molecular subtyp-
ing. To this end, we collected 35 datasets sourced from both public
databases and medical institutions for evaluation and followed the
same setting as the pathological diagnosis for slide-level prediction.
The results are as follows:

Gene mutation prediction. Following the setting of CHIEF14, we pre-
dicted gene mutation related to FDA (Food and Drug Administration)-
approved targeted therapies presented in OncoKB24 and high-
frequency mutations25 in 10 cancer types held out from pretraining
data. The positive mutation ratios are presented in Fig. 4g. The overall
performance (Fig. 4a) exhibits the superiority of mSTAR in mutation
prediction with +2.6% increases (P <0.001) in Macro-AUC, compared
to the second-best FM. On held-out cohorts, mSTAR surpassed the
second-best FM by +2.81%. In particular, among the 18 genes Supple-
mentary Fig. 3a and Supplementary Table 8–9, mSTAR excels in the
prediction of ARID1A in endometrial carcinoma (UCEC) with +5.23%
increase (P <0.001), KRAS with +5.14% (P <0.001) in lung adenocarci-
noma (LUAD), GATA3with +3.2% (P <0.001) improvement and PIK3CA
+2.46% (P <0.001) increase in invasive breast carcinoma (BRCA), KRAS
in cutaneous melanoma (SKCM) with +2.73% increase and EGFR with
+1.81% (P < 0.001) in LUAD. All of these genemutations have significant
clinical relevance26–32, indicating the potential of mSTAR in biomedical
research.

For external validation, mSTAR still obtains about 0.7Macro-AUC
on average and outperformed the second-best FM by about +2%
improvements across 5 external cohorts (Fig. 4h). Specifically, mSTAR
achieves +2.04% improvement (P <0.001) in TP53 of BRCA, +2.06%
increase (P < 0.001) in EGFR of LUAD and +1.11% increase (P < 0.001) in
KRAS of LUAD.

Additionally, mSTAR predicts the mutation status in 14 of the 18
genes withMacro-AUC greater than 0.6 on held-out cohorts, as shown
in Supplementary Fig. 3b and Supplementary Table 8. Mutations with
excellent performance greater than 0.8 include TP53 in BRCA (0.8366;
95% CI 0.8105-0.8627) and glioblastoma multiforme (GBM) (0.8282;
95% CI 0.7780-0.8784), CIC in low-grade glioma (LGG) (0.9157; 95% CI
0.8952-0.9362), PTEN in UCEC (0.9008; 95% CI 0.8737-0.9279). This
showcases mSTAR can provide reliable prediction of these crucial
biomarkers33–37 for biomedical research.

IHC biomarker prediction. Immunohistochemistry (IHC) is widely
used in clinical pathology, primarily for detecting specific proteins in
tissue samples and distinguishing between tumors with similar
pathological features, enabling more precise targeted therapy and
improving patients’ outcomes. However, IHC examination usually
requires extra expensive costs. Therefore, if easily accessible H&E
slides can be used to predict IHC biomarkers, it would significantly
advance the widespread adoption of precision cancer diagnostics,

especially in underdeveloped areas. To assess mSTAR’s performances
on IHC biomarker prediction, we collected 10 datasets for evaluation,
including 3 held-out datasets and 3 external as well as 4 independent
datasets from collaborative medical institutions. Specifically, we
involved common biomarkers comprising ER, HER2, PR and CK5 for
breast cancer, along with CK7 for lung cancer.

From an overall perspective, mSTAR outperforms the second-
performing FM by +1.8% (P <0.001, Fig. 4c). Across 4 independent
datasets, mSTAR performs the best overall (Fig. 4d) by +1.44%
(P < 0.001) over UNI, the second-best FM, while consistently surpass-
ing other FMs on all 4 independent datasets (Supplementary Fig. 3b)
with significant differences (P <0.001). Specifically, mSTAR can
achieve over 0.8 of Macro-AUC on 3 out of 4 tasks including ER and
CK5 for breast cancer and CK7 for lung cancer, as well as almost 0.8 of
Macro-AUC on HER2 (0.7951 ± 0.0125). This indicates mSTAR is cap-
able of offering a reliable prediction for these vital and common bio-
markers, probably resulting in a great reduction of the cost of IHC
examination.

To test the generalization ofmSTAR, 3 external datasets spanning
ER, PR and HER2 in breast cancer are collected from the collaborative
hospital for evaluation. The overall performance is presented in
Fig. 4g.mSTAR consistently showcases superiority in both internal and
external evaluations with +1.81% (P <0.001) and +1.02% (P < 0.001)
increases over the second-best FMs, UNI andCONCH, respectively. For
the examination of ER (Supplementary Table 10), although we
observed a decline in performance compared to the internal cohorts,
mSTAR still maintains Macro-AUC above 0.85 (0.8526 ± 0.0071),
resulting in the promising generalization in the external cohort.

Molecular Subtyping aims to categorize cancers based on their
molecular and genetic characteristics, thereby assisting in identifying
patients with distinct responses to treatment, and prognostic out-
comes. In this study, we investigate molecular subtyping on 4 cancers
including Breast Invasive Carcinoma (BRCA), Colon Adenocarcinoma
and Rectum Adenocarcinoma (CRC), Glioblastoma Multiforme and
Brain Lower Grade Glioma (GBMLGG) and Head and Neck Squamous
Cell Carcinoma (HNSC) on 4 held-out datasets (BRCA_MolSubtype,
CRC_MolSubtype, GBMLGG_MolSubtype and TCGA_HNSC_HPV) and 3
external datasets (ZJ1_Breast MolSubtype, EBrains_MolSubtype and
HANCOCK_HPV).

From the overall perspective, we observed a performance gain of
+1.78% (P <0.001) over UNI, the second-best FM (Fig. 4e). When we
delve into different evaluation strategies, +1.24% (P <0.001) improve-
ment can be seen in held-out cohorts (Fig. 4f). When taking a close on
internal and external cohorts of breast, brain and head&neck cancers
(Fig. 4j), mSTAR surpassed CHIEF (the second-best FM on internal
cohorts) by +1.77%, while exceeding UNI (the second-best FM on
external cohorts) by +1.1%. It is worth noting that in the FMs compared,
mSTAR is the only one that maintains an AUC above 0.85 for both
internal and external datasets, demonstrating strong generalization
ability. Furthermore, mSTAR keeps the consistent superiority over 3
external cohorts (Supplementary Table 11).

To sum up, through the joint pretraining of pathological images
and gene expression data, mSTAR demonstrates superior perfor-
mance and strong generalization across mutation prediction, IHC
biomarker prediction and molecular subtyping. This capability can
provide reliable predictions in clinical applications and biomedical
research, making it possible to utilize accurate molecular information
in a cost-effective manner.

Vision-language evaluation
Strong language-related capabilities are one of the key features of
foundationalmodels, reflecting their potential inopen-world scenarios
where downstream tasks are conducted without further training, that
is, zero-shot learning capability, especially in resource-constrained
scenarios where access to sufficient data and computational resources
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may be limited. Furthermore, pathological report writing is a time-
consuming process in pathologists’ clinical workflow. As such, auto-
matic report generation can significantly streamline workload for
pathologists, which also heavily relies on the foundation model’s lan-
guage capabilities. With the benefit of the involvement of pathology
reports during pretraining, mSTAR is expected to possess great

language capabilities. Therefore, in this study, we assess mSTAR’s
language abilities from three aspects, that is, zero-shot slide classifi-
cation, zero-shot retrieval and report generation.

Zero-shot’s capability always relies on a well-aligned vision-lan-
guage space. Therefore, we use vision-language foundation models as
baselines, i.e., PLIP and CONCH. To produce slide-level predictions for
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patch extractors, following the setup of CONCH3, MI-Zero38 was
adopted through top-K patches voting based on patch similarities to
class prototypes or reports embedded by the pretrained text enco-
ders (Fig. 5a).

Zero-shot Slide Classification. In this study, we assess every FM on 6
slide classification tasks independent from TCGA data, CAMELYON,
PANDA, UBC-OCEAN, BCNB-ER, BCNB-PR and BCNB-HER2.

Across 6 tasks,mSTAR outperforms other FMs on half of the tasks
and performs best on the overall result (Fig. 5b and Supplementary
Table 15). Specifically, compared to the second-best FM, mSTAR
achieves clear enhancement in these tasks by +3.9% on average
(P < 0.001) with a significant difference. In particular, on CAMELYON, a
remarkable rise of +10.4% (P < 0.001) is observed compared to
CONCH, the second-best FM. Furthermore, we see performance
enhancement over the second-best FMby +16.2% (P <0.001) on BCNB-
ER and +19.9% (P <0.001) on BCNB-PR, respectively.

Zero-shot slide retrieval. The capability of zero-shot whole-slide
retrieval can assist pathologists in seeking similar cases for reference,
effectively enhancing diagnostic precision and consistency as well as
reducing the workload for pathologists.

In this study, we explore two settings: Image2Text refers to pro-
viding an image for the model to find the corresponding report, while
Text2Image does the reverse. Although the source of held-out data is
the same as pretraining data, the data itself is totally held out from
pretraining data. We presented results on held-out data for reference
only to be compared with zero-shot’s results on external cohorts. The
results (Fig. 5c and Supplementary Table 16) demonstrate thatmSTAR
has a clear and significant advantage in this dataset, since mSTAR
successfully aligned the vision and language spaces during the pre-
training stage. To investigate whether mSTAR can exhibit the advan-
tage on external data, we collected a dataset spanning breast and lung
cancers from collaborative hospitals, comprising 500 cases of WSI-
Report pairs. Despite performance decreases on the external cohort,
results (Fig. 5c and Supplementary Table 16) demonstrate thatmSTAR
still performs the best among all vision-language FMs, with +9.4% of
Recall@50 on Text2Image and +3.6% of Recall@50 on Image2Text.

Report generation. Automated generation of pathology reports has
enormous potential in simplifying the report-writing process and
reducing the workload burden on pathologists. To assess mSTAR’s
capability of report generation, we collected one pan-cancer TCGA
datasetwith 840 cases held out frompretraining data and two external
cohorts including Nanfang of lung cancer from 250 patients and ZJ-
First of breast cancer from 250 patients. Since pathology reports
generally include numerous contents invisible in whole slide images,
such as macro descriptions, we first leverage GPT-4o-mini to filter out
these irrelevant descriptions. The prompts used for cleaning reports
are presented in Supplementary Table 26. The detailed process
regarding the quality control for reports is presented in Section 4.3. In

this study, we finetuned HistGen39, a pathology report generation
model, based on patch features extracted by different foundation
models.

From the quantitative perspective, we evaluated multiple metrics
including BLEU,METEOR andROUGE-L to assess various aspects of the
generated text, such as precision of n-grams (contiguous sequences of
words), order, alignment, recall, etc. In the held-out TCGA cohort,
across different metrics, mSTAR consistently outperformed the
second-best approach (Fig. 5d and Supplementary Table 1). In one
external cohort, Nanfang, we observe significant improvements in
these three metrics compared to the second-best FM: +6.91% of
BLEU_1, +1.17% of METEOR and +4.61% of ROUGE_L. This indicates
mSTAR has a better generalizable ability for report generation, instead
of justmemorizing the contents of reports. In another external cohort,
ZJ-First, mSTAR demonstrates increases in BLEU metric, indicating
mSTAR excels at generating precise long sentences. For METEOR,
mSTAR achieves a comparable performance with the second-best FM,
while a performance decline of 1.41% is present in ROUGE_L, which
indicates the generated texts of mSTAR are less fluent.

We continued to qualitatively evaluate the quality of generated
reports. The case studies for every cohort are presented in Supple-
mentary Fig. 7. The texts highlighted in red are matched with the
ground-truth report, while the ones highlighted in blue contradict the
true report.

First, we investigate how mSTAR and the competitive FMs per-
form on held-out datasets. For the case (a) and (b) in Supplementary
Fig. 7, the texts generated by R50 are almost unrelated to the ground
truth and always the same. The reason is probably the pretraining
materials are not specific to the pathology domain. The diversity of
generated texts from PLIP, CONCH and CHIEF is better than that of
R50. For example, PLIP, CONCH and CHIEF can identify the histologic
type and simplemargin information for case (a), despitemissingmore
details about diagnosis. However, CONCH and CHIEF showcase poor
relatedness and the generated texts from PLIP are too short for case
(b). UNI and GigaPath are aware of more content types that need to be
generated, although the specific predictions are always inaccurate. In
other words, the generated texts from UNI and GigaPath contain a lot
of hallucinations contradicting to the ground-truth report, such as
case (b). mSTAR is able to identify the necessary content and make
more accurate predictions cautiously, leading to fewer hallucinations.
However, it still fails to count, such as the number of lymph nodes.
Then, when examining the external cohorts closely, they demonstrate
the same characteristics. This indicates that mSTAR has the general-
izable capability of report generation, instead of just memorizing the
template reports.

Given that the current generation capabilities are not perfect,
mSTAR excels compared to other models overall. This can be
attributed to two main factors. First, these foundational models are
encoder-based and do not incorporate decoders during pretraining,
resulting in a significant distribution gap between encoded features
and generated texts. Second, the effectiveness of existing report

Fig. 4 | Performance of molecular prediction on 40 datasets across 10
cancer types. a Overall Performance of Gene Mutation Prediction on 23 datasets.
b Performance of Mutation Prediction on 18 held-out datasets. c Overall Perfor-
mance of Immunohistochemistry (IHC) Biomarker Prediction on 10 datasets.
d Performance of IHC Biomarker Prediction on 4 independent datasets. e Overall
Performance of Molecular Subtyping on 7 datasets. f Performance of Molecular
Subtyping on 4 held-out datasets. In subfigures b, d and f, the minima and maxima
represent the minimum and maximum performance among corresponding data-
sets, respectively, while the center and the bound of box represent the mean per-
formance, 25% and 75% percentiles, respectively. The red lines and the values
reported at the top of figures (a–f) refer to the averaged performance across
datasets. Each point represents a dataset, with the size of the point indicating the

standard deviation. g Positive and Negative Ratios of gene mutation for every
mutation dataset, including genes with high-frequency mutations highlighted in
green and genes related to FDA-approved therapies highlighted in red. h–j Internal
(In) v.s. External (Ext) Evaluation. h Performance of Mutation Prediction on 5
internal and 5 external datasets. i Performance of IHC Biomarker Prediction on 3
internal and 3 external datasets. jPerformanceofMolecular Subtyping on 3 internal
and 3 external datasets. Error bars represent standard errors across datasets for all
bar plots in h-j. P-value for every group of experiments is given through one-sided
Wilcoxon signed-rank test between mSTAR and the second-best FM. * represents
P < 0.05, ** means P <0.01 and *** indicates P <0.001. Detailed performances of
every dataset spanning 10 cancer types are presented in Supplementary Fig. 3 and
Supplementary Table 8--11. Source data are provided as a Source Data file.
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generation methods that are fine-tuned on foundational features
remains restricted.

Survival prediction
Prognostic analysis is an intricate clinical endeavor, which can inform
clinical guidelines and practices, helping healthcare providers make

evidence-based decisions regarding patient care. It is so complicated
that it always necessitates a thorough analysis from a multitude of
facets. In this regard, multimodal data has proven instrumental in
enabling more comprehensive prognostic assessments8–10,40. There-
fore, it is crucial to explore the role of multimodal knowledge within
the broader whole-slide context in enhancing prognostic estimation.
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In this study, we assessed 3 prognostic tasks, Overall Survival (OS),
Disease-Free Survival (DFS) and Recurrence-Free Survival (RFS) on top
of pathological tissue slides. All endpoints in our study were chosen
based on their broad usage in clinical oncology and alignment with
public datasets.We believe this preserves the clinical utility thatmakes
our findings meaningful for both researchers and practicing oncolo-
gists. To this end, we collected 10 held-out cohorts covering 10 cancer
types from TCGA, and 4 external and 2 independent cohorts for gen-
eralizable validation from public databases and collaborative medical
institutions. The distribution relationship between tasks and cohorts
can be seen in Fig. 6c. The distribution of samples for every cohort is
presented in Supplementary Table 1.

First, we investigate the performance of held-out cohorts over 10
datasets, which demonstrates a slight improvement of +0.5%
(P < 0.001) overall, compared to UNI, the second-best FM. For con-
sistency of performance increases, mSTAR performed best compared
to other foundation models, achieving the top performance on 6 out
of 10 datasets. However, UNI, ranking in the second place, performs
the best on 2 out of 10 datasets.

Although the improvement in the held-out cohort is not promis-
ing, mSTAR demonstrates strong generalization, achieving an average
increase of +2% (P <0.001) on 4 external cohorts, especially on OS_ZJ1
of breast cancer for overall survival with +2.88% increase (P <0.001).
Across 4 external cohorts and 2 independent cohorts, mSTAR also
shows consistent superiority, which indicates a great generalizable
ability of survival prediction.

To demonstrate patients’ stratification performance, we exam-
ined the Kaplan-Meier curves characterized by mSTAR for every task
(Supplementary Fig. 5), where 12 out of 14 tasks showcased the sta-
tistical difference between low-risk and high-risk groups, via Logrank
Test41.

Multimodal fusion
Multimodal data typically provides a more comprehensive under-
standing of cancer, excelling in various clinical applications, such as
treatment response prediction for neoadjuvant chemotherapy42 and
prognostic analysis43. However, multimodal data integration often
suffers from the heterogeneity of different modalities, leading to

Fig. 5 | Vision-language evaluation. a The scheme of zero-shot evaluation. For
zero-shot classification, we used class prompts as the text input. For zero-shot
retrieval, the text input is a pathology report. b Performance of zero-shot slide
classification on 6 independent datasets. The ʻOverallʼ refers to the averaged per-
formance across these 6 datasets. Error bars represent 95% CI with 1000 bootstrap
replicates for all bar plots. P-value is given through one-sidedWilcoxon signed-rank
test between mSTAR and the second-best FM. c Performance of zero-shot retrieval

on an external dataset for Image-to-Text and Text-to-Image tasks. The results on
held-out TCGA dataset are presented for reference only to be compared with zero-
shot’s capability. d Performance of report generation on one held-out TCGA
dataset and two external datasets. P-value for every group of experiments is given
throughone-sidedWilcoxon signed-rank test betweenmSTAR and the second-best
FM. Detailed performances of every dataset are presented in Supplementary
Table 15–17. Source data are provided as a Source Data file.

Fig. 6 | Performance of Survival Prediction on 16 datasets. a Comparison of
C-Index between mSTAR and compared methods on 9 held-out datasets.
b Comparison of C-Index between mSTAR and compared methods on 4 external
datasets. The red lines and the values reported at the top of figures (a, b) refer to
the averaged performance across datasets. Each point represents a dataset, with
the size of thepoint indicating the standarddeviation. cTaskdistributionof various
survival endpoints for different evaluation. d The performance (C-Index and 95%
CI) on independent cohorts. `out' refers to the partitions held out frompretraining
data. `idpt' means independent datasets with a data source that differs from the

pretraining data. `ext' represents external datasets where data originates from a
source distinct from the training data used for fine-tuning and is used solely for
testing, without any training involved. Error bars represent 95% CI with 1000
bootstrap replicates for all bar plots. P-value for every group of experiments is
given through one-sided Wilcoxon signed-rank test between mSTAR and the
second-best FM. * represents P <0.05, ** means P <0.01 and *** indicates P <0.001.
Detailed performances of every dataset are presented in Supplementary Table 18.
Source data are provided as a Source Data file.
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limited performance. As a result, whether pathological features from
foundation models can be well aligned to other modalities plays a
crucial role in multimodal analysis. With the benefit of multimodal
pretraining, they can align with each other by contrastive learning,
thereby potentially alleviating inter-modal heterogeneity. Therefore,
in this study,weexaminewhethermSTAR facilitatesmultimodal fusion
by assessing multimodal overall survival prediction tasks.

To validate this, we replaced pathological features with ones
extracted by various extractors in existing multimodal fusion models
for 9 cancer survival prediction tasks held out frompretraining data, to
observe the differences that would arise. Specifically, to reduce biases
caused by multimodal integration approaches, 4 recent multimodal
fusion models were employed in this study to make the multimodal
slide-level prediction, including MCAT8, Porpoise43, MOTCat9 and
CMTA10.

On the whole, mSTAR has clearly outperformed other SOTA
methods by a wide margin. Considering average rank, mSTAR ranked
between 1.22 and 1.67 among various fusion models and the overall
rank is 1.47, which left the second-best approach UNI far behind

(Fig. 7a) ranking at 2.68 on average. For average C-Index (Fig. 7b),
mSTAR achieved consistent and notable enhancement in multimodal
fusion with a significant difference, with average performance increa-
ses of +1.8% (P < 0.001). Among different multimodal fusion models,
mSTAR outperformed the second-best FM by +1% (P = 0.02) forMCAT,
+1.1% (P <0.01) for Porpoise, +2.4% (P <0.005) for MOTCat and +1.4%
(P < 0.005) for CMTA.

Across various datasets,mSTAR surpassed the second-best FM on
8 out of 9 datasets (Fig. 7b and Supplementary Table 19). Among them,
+2.22% on BRCA (P <0.001), +2.55% on CRC (P <0.001), +2.17% on
HNSC (P <0.001), +1.89% on LUSC (P < 0.001), +1.83% on UCEC
(P < 0.001) are achieved with statistically significant differences. Spe-
cifically, based on MCAT, mSTAR surpassed other SOTA approaches
on 5 out of 9 tasks (Supplementary Table 20), especially on BRCA
(+1.9%, P <0.001). mSTAR with Porpoise demonstrated superior per-
formance in the majority of tasks, topping 6 out of 9 datasets (Sup-
plementary Table 21), which increased the second-bestmodel by up to
+3.8% (P <0.001). In the case of MOTCat, mSTAR excelled in 6 out of 9
tasks (Supplementary Table 22) with performance increases of up to

Fig. 7 | Multimodal fusion performance of overall survival prediction on
pathological slides and gene expression data. The patch extractors of all foun-
dation models are evaluated with different multimodal fusion models (MCAT,
Porpoise, MOTCat and CMTA), trained from scratch across 9 TCGA held-out
datasets. a Performance of Ranking on 9 datasets of each FM on every multimodal
fusion models and “Overall” that refers to the average results among these multi-
modal fusion methods. b The average C-Index on 9 datasets. c Performance (C-
Index and 95% CI) on each dataset. The minima and maxima represent the lower

and upper bounds of 95%CI, respectively. The center and the bound of box
represent the mean value, 25% and 75% percentiles, respectively. P-value is given
throughone-sidedWilcoxon signed-rank test betweenmSTAR and the second-best
FM. The colors of legends are shared across all sub-figures. * represents P <0.05, **
means P <0.01 and *** indicates P <0.001. Detailed performances of every dataset
are presented in Supplementary Table 19–23. Source data are provided as a Source
Data file.
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3.2% (P < 0.001). For CMTA,mSTARdelivered the highest performance
in 6 of 9 (Fig. 7f and Supplementary Table 23), advancing the second-
best one by up to 2.9% (P < 0.001).

In a nutshell, the remarkable increases across various datasets and
diverse multimodal fusion backbone models vividly demonstrate the
tremendous contributions of multimodal knowledge embedded by
slide-level multimodal contrastive learning in facilitating multimodal
fusion.

Ablation study
In this section, we first quantitatively investigate the impacts of dif-
ferentmodalities and eachcomponent of pretraining objectives Fig. 8a
and c), and disentangle the architecture design of Self-Taught Pre-
training paradigm by intuitively showcasing the evolution of feature
space Fig. 8 b). In the end, the resource efficiency and effectiveness of
scaling vision data only or modalities are explored Fig. 8d).

Impact of different modalities. We conducted ablation studies on
different combinational modalities and demonstrated the effective-
ness of every part based on changes in performance. The purpose of
this experiment is to explore howmuch various modalities contribute
to performance gains; hence, it is only involved in the pre-training of
the aggregator at Stage 1. Therefore, to demonstrate its contribution,
we only need to compare the performance of pretraining on three

modalities with ‘before aggregator pre-training’ and ‘after pre-training
with two modalities’.

To this end, we have systematically evaluated proportional data-
sets for each task category (24 datasets). From the results in the Fig. 8a,
we observed that the impact ofmultimodal data on performance gains
differs significantly depending on the task type, and the synergy of
three modalities resulted in further improvements. The results
demonstrate consistent performance improvements across all types of
tasks, with a notable average increase of 5.3% specifically observed in
the 12 molecular prediction tasks compared to that of only 2 mod-
alities. More interestingly, we found that text modalities outperform
genomic data in diagnostic tasks, which intuitively corresponds to the
diagnostic-rich nature of pathology reports. For molecular and prog-
nostic predictions, textual and genomic data demonstrated compar-
able performance, consistent with prior findings44 that both
phenotype (text-derived) and genotype features contribute to
stratification.

Impact of each component in pretraining objectives. For the abla-
tion of pertaining loss functions, we also estimate their influences by
removing them during pretraining, and observe the changes in per-
formance. Results in Fig. 8c showcases that both objective functions
make a difference in the pretraining, and their combination elevates
performance to a higher level.

Fig. 8 | Ablation studies. a averaged performance on pathological diagnosis (3
datasets), molecular prediction (12 datasets) and survival prediction (9 datasets),
where ʻBeforeʼ refers to before pretraining, and ʻPʼ, ʻTʼ and ʻGʼ indicate pathology
slides, pathology reports and gene data, respectively. Error bars represent standard
errors across datasets for all bar plots. b visualization of feature space evolution:
from before pretraining (initial) to Stage 1 (pretrained aggregator) and Stage 2
(mSTAR), where the areas in red bounding box are multiple tumor regions (1-7) of
the case of patient_042_node_3 of CAMELYON17 dataset. Note that different tumor

areas correspond to different spatial positions. c averaged performance (9 TCGA
OS datasets) for ablating different pretraining objectives (Inter-modal Loss and
Inter-cancer Loss) for survival prediction (Supplementary Table 4). d averaged
performance (24 datasets) and resources comparisons between scaling slides only
(Virchow) v.s. scaling modalities (mSTAR) for pretraining, with UNI as a baseline.
Detailed performances of every dataset are presented in Supplementary Fig. 8 and
detailed comparisons are showcased in Supplementary Table 5–6. Source data are
provided as a Source Data file.
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Disentangling self-taught pretraining paradigm. Self-Taught Pre-
training paradigm consists of two stages. Stage 1 focuses on training
the aggregator while keeping the extractor frozen. Its effectiveness is
evaluated by ablating the contribution of the third pre-training mod-
ality (as previously discussed). Stage 2 performs self-taught training of
the extractor with the aggregator frozen. Here, the extractor’s
improvement is validated by comparing its performance to the pre-
trainedUNI baseline,with results verified across97 tasks. Furthermore,
from a feature-space perspective, we visualize the evolutionary
dynamics of each stage in Fig. 8b. The clusters progressively coalesce,
demonstrating clear separation between tumor and non-tumor
regions as training advances. Both quantitative performance evalua-
tion and qualitative feature-space visualization consistently verify the
effectiveness of each training phase.

Modality scaling versus vision data scaling. Recent studies have
claimed that substantially increasing the number of slides for unim-
odal pretraining can significantly improve model performance, e.g.,
Virchow45, a vision-only PFM pretrained on 1.5 million slides. To
investigate this, we compared the efficiency of scalingmultimodaldata
versus scaling unimodal visual data alone. Our findings reveal that
unimodal scaling exhibits limited efficiency and poor generalization,
whereas multimodal pretraining achieves superior performance even
withmodest data volumes.Multimodal pretraining has the potential to
circumvent the substantial effort required for large-scale slide
collection.

Parameter-wise, compared to Virchow of 631M, mSTAR merely
consists of 415M (34% reduction) parameters including the 303M
visual encoder (the same as UNI), 2.67M TransMIL module, 0.94M
genomic scBERT, and 108M BioBERT text encoder (smaller than
CONCH). Data-wise, when benchmarked against UNI’s performance
baseline, we compared mSTAR with Virchow as shown in Fig. 8d.
mSTAR achieves competitive improvements with only 22K additional
slide-level pretraining samples–a far smaller fractionof the 1.39Mextra
slides required by Virchow for better performance gains. This
53 × reduction in additional data demonstrates that multimodal data
brought higher efficiency per sample compared to vision-only brute-
force data scaling, significantly reducing pretraining costs in GPU-
hours (Supplementary Table 5) while even enhancing clinical-grade
accuracy. Our findings offer a remarkable advantage and a practical
pathway in scaling pathology foundation models, especially for
resource-constrained medical AI development where large-scale data
collection is often impractical. Training-wise, as shown in Supple-
mentary Table 5, while UNI requires 4x8 A100 80GB GPUs (4 nodes,
each with 8 GPUs) for 32 GPU hours (1024 GPU hours in total), mSTAR
merely needs 4H800 80GBGPUs (1 node, eachwith 4 GPUs) for 7 days
(672 GPU hours in total). While Virchow does not report exact training
durations, its substantially larger model size (631M vs. our 414M
parameters) and 53 × greater pretraining data (1.39M vs. our 22K
slides) inevitably require far greater computational resources. More
comparison can be seen in Supplementary Table 5–6.

Discussion
In this study, we delve into how to harness the full potential of three-
level multimodal data to advance the performance of the pathology
foundation models effectively, by pretraining the model on over 116
million pathological images of 26kmodality pairs from 10,275 patients
across 32 major cancer types. Additionally, we explored a new whole-
slide pretraining paradigm for CPath, which broadened the context of
modeling for better performance on slide-level tasks. For systematical
evaluation, we established the largest spectrum of oncological
benchmark datasets, covering 7 categories of oncological applications
comprising 15 types of 97 oncological tasks. With the benefit of the
involvement of pathology reports and gene expression data in pre-
training, diverse experimental results demonstrated that mSTAR

excelled in not only molecular prediction but also pathological tasks
frequently presented in pathology reports at the slide level, such as
pathological subtyping, mutation prediction and report generation.
Furthermore, multimodal pretraining facilitated multimodal fusion
tasks due to a well-aligned multimodal space and endowed the model
with more generalized zero-shot’s capabilities.

In the realm of prior investigations into pathology foundation
models, two prominent categories have emerged: vision-only
models2,4,46 and vision-language models1,3. However, these approa-
ches fail to tap into a vast wealth of information inherent in
macroscopic-level pathology reports written by experts and
molecular-level gene expression profiles. Pathology reports usually
provide authentic expert knowledge in line with the clinical practice,
while gene expression profiles serve as robust indicators of oncology
status for clinical applications in diagnosis47 and prognosis48. As shown
in Fig. 8 and Supplementary Table 3, the involvement of pathology
reports and gene expression data can bring extra performance gains.
The superiority inmolecular prediction and report-related oncological
validates modality scalability in pathology foundation models, which
potentially provides a guiding conclusion: pathology foundation
models can benefit from a more diverse range of modalities.

Recently, beyond working on small patches/ROIs, we noticed that
some studies4,14 attempted to work on slide-level foundation models,
which pretrained the model on patch features. However, the pre-
trained performance significantly depends on the quality of patch
features, leading to under-performing results compared to mSTAR. In
other words, their performance would be limited by the patch
extractor. We believe that end-to-end pretraining is a promising solu-
tion in the future, while its current implementation is hindered by
hardware limitations. Therefore, mSTAR bridges this gap through self-
taught training to seamlessly transfer the knowledge captured by the
slide aggregator into the patch extractor.

Distinct from previous researches, our study provides the
uniqueness in three folds. First, our findings showcase the remarkable
power of leveraging multimodal data, especially in enhancing multi-
modal capabilities. This validates the scalability of modalities, pro-
viding the guidingprinciple for buildingpathology foundationmodels.
We show thatmultimodal integration yields disproportionately higher
returns than unimodal scaling, offering a pathway to develop perfor-
mant PFMs without requiring massive slide collections. Second, we
found a unified way to bridge the gap between slide-level and patch-
level pretraining, bringing us closer to achieving end-to-end pretrain-
ing on raw slide data. We believe this innovative unified paradigm will
revolutionize the workflow of pretraining for CPath. Moreover, this
paradigm allows the injection of multimodal knowledge into pathol-
ogy foundationmodels in an appropriate manner, which may hold the
potential to harness more modalities to construct a stronger founda-
tion model for CPath. Third, we established the widest range of
oncological benchmarks spanning 7 categories of 15 types of 97
oncological tasks.

Although preliminary results are encouraging, this study still has
several limitations. First, the challenge of collecting pairedmultimodal
data naturally limits the scale of pretraining data, compared to pre-
vious works of pathology foundation models. By expanding the scale
of multimodal data for pretraining, we can expect to unlock further
potential for enhancing various abilities, such as multimodal cap-
abilities. Fortunately, the growing accumulation of slide data enables
future validation of scaling laws in multimodal contexts, a previously
unexplored frontier in computational pathology. Second, the present
investigation was limited to three modalities; subsequent studies
incorporating a broader range of modalities, e.g., IHC, specialized
stained slides, and spatial transcriptomics, will be essential for robust
validation of the modality scaling law. Third, we still potentially have a
longway to gobefore achieving the true end-to-end foundationmodel.
Before that, mSTAR will serve as an alternative solution to seamlessly
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bridge slide-level and patch-level pretraining. However, there are still
several challenges to be further explored, such as the appropriate way
to propagate the pretrained knowledge embedded in the slide aggre-
gator and the architectural design of slide aggregator. In mSTAR, due
to a large number of patches of a WSI that would lead to extremely
high computational costs, we selected TransMIL with linear time
complexity as the slide aggregator. However, the increase in training
speed comes at the expense of sacrificing a portion of the perfor-
mance. Fortunately, a multitude of innovative architectures for hand-
ling long sequences are emerging, such as Mamba49, LongNet50, etc,
which we explore in concurrent work51. We believe that these new
architectures will undoubtedly create new avenues in exploring more
efficient and powerful pretraining paradigms for CPath. Lastly, due to
the inherent challenge of gathering rare cancer data, there is still a
need for further assessment of zero-shot’s performance on real rare
cancer cases, although zero-shot’s performance can reflect the per-
formance under the situation of limited data to some extent. In the
future, we plan to incorporate moremultimodal data into pretraining,
such as multi-omics data, explore new efficient pretraining archi-
tectures, and keep moving forward in the collection of rare
cancer data.

Method
This study has been reviewed and approved by the Human and Arte-
facts Research Ethics Committee (HAREC). The protocol number is
HREP-2024-0212.

Pretraining dataset curation
Data used for pretraining in this study were totally obtained from a
publicly available source, the Cancer Genome Atlas Program (TCGA)16,
in which we collected 9640 cases (11,765 slides) of diagnostics
formalin-fixed paraffin-embedded (FFPE) H&E WSIs, 11,108 pathology
reports and 10,234 cases of bulk RNA-Seq data across all 32 cancer
types of TCGA. After quality control, we curated a dataset with 8440
WSI-Report pairs, 8965 WSI-RNA-Seq pairs and 8764 Report-RNA-Seq
pairs, resulting in 26,169modality pairs, as shown in Fig. 1c. These data
involve over 116 million pathological patch images. Given that
numerous downstream tasks were evaluated on TCGA data, we held
out some validation and test cases. For 9 cancer datasets comprising
over 400 cases, we adopted a split ratio of 7:1:2 for train-validation-test
folds. For those cases involving multiple slides, we combined their
patches or features into a single case for pretraining at the patient
level. This ensured slides belonging to one case were included within
the same fold, thereby preventing potential data leakage. We also
considered label stratification for survival labels at patient-level, since
we primarily evaluated the performance of survival prediction on
TCGA data. Note that all cases without survival labels were used for
pretraining. Details of data splitting for these 9 cancer datasets are
provided in Supplementary Table 24. After data partitioning, we
curated 22,127 modality pairs for contrastive learning, consisting of
7083WSI-Report pairs, 7538WSI-RNA-Seqpairs and 7506Report-RNA-
Seqpairs. Among these, therewere 7947 caseswith all threemodalities
for pretraining. For acquisition of high-quality data, we conducted the
subsequent pre-processing procedures for each modality.

WSI pre-processing. To conduct slide- (or patient-) level tasks on
WSIs, our processing pipeline involved tissue segmentation, patching,
and feature extraction (for pretraining aggregators and evaluation).
For tissue segmentation, we employed the CLAM library12, which per-
formed binary thresholding on the saturation channel of a down-
sampled RGB slide, converted to the hue-saturation-value (HSV) color
space. The resulting segmentation mask was obtained by filtering the
contours based on their area. The hyperparameters of segmentation

are released on our codebase. Furthermore, slides thatwere corrupted
and those containing a small proportion of tissue region were exclu-
ded from this study. As a result, we acquired 9608 cases of 11,727 slides
for pretraining and evaluation.

To adhere to established practices of previous works2,3,12, we
partitioned the segmented tissue regions into 256× 256 pixels patches
at 20 × -equivalent magnification without overlaps and then resized all
patches to 224 × 224 pixels for feature extraction. Using pretrained
patch extractors that were kept frozen, we pre-extracted embeddings
for each patch and stored them for subsequent evaluation purposes.

Report pre-processing. For pathology reports, we curated open-
source texts from TCGA and converted them from their original PDF
format to editable text format via AmazonWeb Services (AWS)Optical
Character Recognition (OCR) tools, resulting in 9523 Reports. For
quality control, we curated these reports via the powerful language
tool, GPT-4, with appropriate prompts provided in Supplementary
Table 25, and re-checked them manually to ensure the unchanged
original intent. The statistical distribution of word counts for reports is
demonstrated in Fig. 1e, in which the majority of cases have word
counts below 500.

RNA-Seq Pre-processing. We accessed RNA-Seq data of TCGA from
cBioportal database, which were preprocessed and normalized using
RSEM52. An inherent difficulty in gene expressionmodeling arises from
the variations in absolute magnitudes observed across different
sequencing protocols53. Therefore, we further applied a common
preprocessing technique log1p transformation54 for gene expression
values. Following previous works55, Gene2Vec56 contributed to better
representing the gene names by enforcing that words with similar
meanings are assigned similar representations. Therefore, we retained
genes present in the Gene2Vec vocabulary. In the end, we obtained
9890 cases RNA-Seq data, each consisting of genes with a length
of 17,425.

Pretraining framework
To utilize multimodal knowledge at the whole-slide context for
enhancing the pathology foundation model, we propose a whole-slide
pretraining paradigm consisting of two-stage pretraining, as shown in
Fig. 2. In thefirst stage,weaim to injectmultimodal knowledge into the
slide aggregator by contrastive learning, including inter-modality
contrastive learning (following CLIP57) and inter-cancer contrastive
learning. In the second stage, to seamlessly propagate multimodal
knowledge at the slide-level context into the patch extractor, we
leverage the slide aggregator pretrained in the first stage, serving as a
“Teacher” model, to supervise the pretraining of the patch extractor,
termed Self-Taught training. In this way, multimodal knowledge of the
whole-slide context can be injected into the pathology FM.

Stage 1 - pretrain slide aggregator. In this stage, we aim to pretrain a
slide aggregator that learns multimodal knowledge by contrastive
learning with other modalities. Note that the pretrained slide aggre-
gator plays a role of “Teacher” that propagates the learned knowledge
into the patch extractor at the next stage. Thesemodules to be trained
arehighlighted in redboxes in the Fig. 2a, inwhichwepretrain a 2-layer
TransMIL13 as the slide aggregator for WSIs, a Bert-like text encoder
(following BioBert-Base-v1.258) for pathology reports, and a Performer
(following scBERT55) for RNA-Seq data.

Given these transformer-like encoders, we need to tokenize raw
data of every modality into token embeddings before feeding them
into their respective encoders. For pathology, we obtained non-
overlapping 224× 224 patches as early mentioned, and then for every
patch, we used a pretrained patch extractor, UNI2, to extract patch
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features, where a patch featurewas regarded as a token embedding for
the slide aggregator. After gathering 4096 patch features for the i-th
patient’s WSIs, Pi = fpm

i gMm= 1, we fed them into the slide aggregator to
integrate all patch features and got a 512-dimensional pathological
[CLS] token embedding Pi as the slide-level representation, whereM is
the number of patches and it was fixed into 4096. For cases where the
number of patches exceeds 4096, a random selection of 4096 patches
is made, while for cases with fewer than 4096 patches, padding is
applied using the mean value. For those cases where one patient has
more than oneWSI, we simply concatenated them together. Note that
all patch features were transformed into 512-dimensional features by a
linear projection before being forwarded into the aggregator.

For pathology reports, we adopted the text encoder for randomly
truncated 512 tokens and outputted the report [CLS] token embedding
Ti. For cases where the length of the text is less than 512, the special
token ’[pad]’ was padded. The RNA-Seq data was organized as a set of
2-tuple (gi, ei) comprising of the gene name gi and its expression
variable ei. Following previous works55,59, to assure that genes with
potential co-expression get close together, we employed Gene2Vec56

to generate 200-dimensional gene embeddings for each gene name gi.
Gene expression can be viewed as the manifestation or presence of
each gene, which has been well-documented within a biological sys-
tem. Therefore, we applied the term-frequency-analysis method used
in previous works55,59 to discretize the continuous expression variable
ei through binning technique. Subsequently, the discrete variable was
transformed into a 200-dimensional embedding, which was then
integrated into the final gene token embedding gi by addition.
Through forwarding the gene encoder, we can get the gene [CLS]
token embedding Gi. It is worth noting that encoder outputs from
report and gene modalities were transformed into 512-dimensional
features by a linear projection for contrastive learning.

To optimize the model through pretraining, we incorporate two
objectives including inter-modality contrastive learning and inter-
cancer contrastive learning. In the case of inter-modality contrastive
learning, given the [CLS] representation of each modality, every two
modalities can be paired together, which finally yielded three combi-
nations: WSI-report (Pi, Ti), WSI-gene (Pi, Gi) and report-gene (Ti, Gi).
During pretraining between every modality pairs, a mini-batch con-
sisted of N samples, e.g., fðPi,TiÞgNi= 1 for WSI-report. Contrastive
learning imposes a higher similarity in modality pairs from the same
sample. TakeWSI-report pairs as an example, and the loss function can
be formulated as

LP�T = � 1
2N

XN

i = 1

log
expðP>

i Ti=τÞPN
j = 1 expðP>

i Tj=τÞ

� 1
2N

XN

j = 1

log
expðT>

j Pj=τÞPN
i= 1 expðT>

j Pi=τÞ

ð1Þ

where τ is a scale factor of the contrastive loss and it was set by default
following CLIP57. Similarly, we can get LP�G and LT�G and finally
combine them by addition.

To alleviate the heterogeneity of various cancer types, we utilized
inherent cancer labels available in TCGA for the inter-cancer pre-
training objective. Specifically, [CLS] tokens of available modalities
(regardless ofwhether they involved twoor threemodalities) would be
concatenated into a single anchor representation ai. Furthermore,
positive and negative samples were obtained within the mini-batch,
and they were from the same cancer and different cancers, respec-
tively. Similarly, they were constructed in the same way by con-
catenating the [CLS] tokens from available modalities, leading to a+

and a− for positive and negative samples, respectively. Subsequently,
we enforced a triplet loss Ltriplet for them to bring the samples of the

same cancer closer than that of the negative sample:

Ltriplet =
1
N

XN

i= 1

maxðdðai,a
+ Þ � dðai,a

�Þ+ ϵ, 0Þ ð2Þ

where a+ and a− represent the farthest positive samples and nearest
negative samples within a mini-batch, respectively, following the hard
sample mining technique60. Here we used l2 distance for function d( ⋅ )
and ϵ is the margin which was set 0.3 based on smoother stability of
loss degradation in the training set. Through these two pretraining
objectives, as a result, we can get a well-trained slide aggregator that
absorbedmultimodal knowledge, whichwould be the ’Teacher’ for the
patch extractor at the next stage.

Stage 2 - pretrain patch extractor. Upon finishing the first stage of
pretraining, we can obtain a slide aggregator incorporating multi-
modal knowledge by being pretrained with multimodal data. In this
stage, we leverage the pretrained slide aggregator as “Teacher” to
seamlessly propagate multimodal knowledge into pathological patch
extractor (ViT-L61), as shown in Fig. 2b, which is termed Self-Taught
training. Specifically, for each WSI, we gathered their patch features
Pi = fpm

i gMm= 1 of the i-th WSI and fed them into the aggregator pre-
trained in the previous stage, whereM refers to the number of patches
of this WSI. Following the setting in the previous stage,M was fixed as
4096. In this way, every patch can be re-embedded into new features
P̂i = fp̂m

i g
M
m= 1 incorporating multimodal knowledge. With these re-

embedded features as the objective guidance, we can pretrain a patch
extractor by enforcing the extracted patch feature to get as close as
possible to the ones re-embedded by the well-trained aggregator. To
achieve this, for each patch, we can query its corresponding re-
embedded feature p̂m

i encoded by the aggregator and further tuned
the extractor with a loss function that minimizes the discrepancy
between patch features encoded by the patch extractor and the cor-
responding re-embedded features incorporating multimodal knowl-
edge:

min
XM

m

f pm
i

� �� p̂m
i

�� ���� ��
1

ð3Þ

where f( ⋅ ) is a linear projection for adjusting the dimension of features
and it transformed them into 512-dimensional features. Additionally,
to avoid the catastrophic forgetting problem, a siamese structure is
employed for the patch extractor consisting of two identical branches,
where the parameters of one branch are updated using gradient
descent, while the parameters of the other branch are updated using
an Exponential Moving Average (EMA) of the parameters from the
previous branch, without any gradient updates. Afterward, we
enforced a similarity constraint between the patch features pm

i
extracted by the branch with gradient updates and those pm

i
embedded by the branch with EMA updates. In the end, we combined
two objectives into a loss function for pretraining the patch extractor:

min
XMi

m

λ � f pm
i

� �� p̂m
i

�� ���� ��
1 + ð1� λÞ � pm

i � pm
i

�� ���� ��
1

ð4Þ

where λ is a balancing coefficient and it was set 0.6 based on smoother
stability of loss degradation. By doing this, the patch extractor was
enhanced by multimodal knowledge at the whole-slide context.

Downstream tasks
Comparisons and baselines. To investigate the benefit of enhancing
the patch extractor by incorporating multimodal knowledge at the
slide level, we compared mSTAR against one general baseline and
three SOTA pretrained extractors commonly used in the CPath com-
munity: (1) ResNet5022 pretrained on ImageNet-1K62, a commonly used
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baseline in many slide-level tasks9,13. (2) PLIP1, a vision-language (V-L)
architecture (CLIP57) pretrained on OpenPath consisting of over 200k
pathological patch-caption pairs. (3) CONCH3, a V-L CoCa63 framework
with an additional generative loss pretrained on over 1.17 million
pathological patch–caption pairs. (4) UNI2, a pure vision patch
extractor pretrained onmore than 100million patches fromover 100k
WSIs, and (5) CHIEF14 as well as (6) GigaPath4, 2 slide-level vision-only
pathology foundationmodels pretrained on 60,530 and 171,189 slides.
Through pre-extracted patch features via these encoders, we can get
1024-dimensional (1024-d) embeddings for ResNet50, UNI, and
mSTAR, 512-d embeddings for PLIP andCONCH, 768-d embeddings for
CHIEF and 1536-d embeddings for GigaPath.

Models for downstream tasks
WSI classification and survival prediction. For slide-level prediction
including classification and survival prediction, we follow the con-
ventional two-stage MIL paradigm comprising pre-extraction of patch
features as instances and the training of a MIL aggregator that inte-
grates patch features (or instances) into a single slide-level (or bag)
feature. The aggregator took all patch features of aWSI as an input and
mapped them into a hidden embedding as a single slide-level repre-
sentation. Subsequently, the slide-level representation was passed
through a fully connected classifier head, resulting in logits. Lastly,
based on logits, we performed two types of slide-level tasks including
classification supervised by cross-entropy loss with slide labels, and
survival prediction (an ordinal regression task) supervised by NLL
loss64 with survival labels (event time in month), ranging from various
diagnosis andprognosis tasks. Unless otherwise specified,weobtained
slide-level predictions by training the widely used attention-based
multiple-instance learning (ABMIL)11, a MIL aggregator that integrates
all patch features of aWSI into the slide-level representation according
to attention scores. For CHIEF and GigaPath, we fully follow the design
in their original text that their pretrained patch extractors paired with
the corresponding pretrained aggregator were employed. In parti-
cular, for patient-level tasks, such as survival prediction, we con-
catenate features of all slides belonging to a single patient as one case
for the patient-level prediction.

We used the same hyper-parameters set for mSTAR and the
competing FMs, in which the hidden dimensions are 512 and dropout
keeps p = 0.25 after each intermediate layer in the network for reg-
ularization. We trained each model for 30 epochs on the training split
by an Adam optimizer of the learning rate of 2 × 10−4 along with a
cosine learning rate scheduler. The full set of hyperparameters is
summarized in Supplementary Table 27.

Multimodal fusion. In the experiments of multimodal fusion, we
employed 4 existing SOTA multimodal integration models, MCAT8,
Porpoise43, CMTA10 and MOTCat9. It is worth highlighting that the
training and evaluation of multimodal datasets held out from TCGA
followed the same splits as that of vision-only models, and we simply
discarded those cases without paired RNA-Seq data. For the afore-
mentioned four existing multimodal integration models, we followed
their default hyperparameters for these models, and detailed hyper-
parameters for each model are presented in Supplementary
Table 28–30. For Porpoise, the input length of RNA-Seq varies across
different cancer datasets in TCGA and the hidden dimension for RNA-
Seq is fixed as 25, while the hidden dimension of pathological features
was first transformed into 512 and then 256. Both modality branches
adopted the dropout technique with p = 0.1. Lastly, features from two
modalities were fused into a 256-dimensional slide-level feature. For
MCATandMOTCat, the hiddendimensionof featureswas 256 for both
modalities and dropout was 0.25 for regularization. Subsequently,
features from twomodalities were concatenated and integrated into a
256-dimensional slide-level representation. Similarly, CMTA followed
the same hyperparameters except the hidden dimension of RNA-Seq

which first became 1024 and then 256. For RNA-Seq data of MCAT,
CMTA and MOTCat, embeddings were defined based on 6 functional
categories according to 65 provided in MCAT by default, including 1)
Tumor Supression, 2) Oncogenesis, 3) Protein Kinases, 4) Cellular
Differentiation, 5) Transcription, and 6) Cytokines and Growth. More
training hyperparameters are provided in Supplementary Table 31.

Zero-shot slide classification and retrieval. We considered the pre-
trained model as a good zero-shot learner, and employed non-
parametric MI-Zero38 that does not rely on parametric training for
these tasks, awell-established zero-shot approach for pathology slides.
Given that the zero-shot’s capability heavily relies on the well-aligned
modality spaces, we only compared against those approaches that are
equipped with the text encoder by utilizing the pretrained text enco-
der as a good classification head, including PLIP and CONCH. The
ensembling prompt of templates was used as the textual classification,
which was utilized to compute the cosine similarity score with every
patch feature. In the end, MI-Zero made the slide-level decision for
every slide in the test set based on themajority voting of top-K scores.

Pathological report generation. To do this, we finetune the specific
model of report generation, our prior work HistGen39. Given patients’
pathology features fromWSIs of each FM,HistGen is able to produce a
sequence of words. Specifically, given extracted pathological features
from the foundation model, the encoder-decoder architecture of
HistGen would encode them into the latent features for report
decoding. Subsequently, these features are utilized by the text deco-
der to generate the report. The quality of the generated report is
directly influenced by the quality of the pathological features encoded
by each FM. For all optimization hyperparameters, refer to Supple-
mentary Table 32.

Evaluation
We need to clarify that pathology reports were only used during pre-
training (for multimodal alignment with WSIs), while all downstream
tasks were evaluated usingH&E diagnostic slides only as the input with
no text data. This aligns with standard foundation model paradigms
(e.g., CONCH3, where text aids pretraining but isn’t available during
inference). Furthermore, the cases used for downstream evaluation
were rigorously excluded from pretraining data. To systematically
evaluate mSTAR’s capabilities, as shown in Fig. 1f, following the pre-
vious work14, we adopted four evaluation strategies as follows:

‘Held-out’ (out) represents the downstream dataset held out
from pretraining data to avoid data contamination for evaluation. The
training data included in pretraining data was used for training task-
specific models, which were then used for inference on validation and
test sets (i.e., held-out cohorts) that were held out from the
pretraining data.

‘Independent’ (idpt) underscores that the source of dataset is
independent from that of the pretraining data. For these datasets, we
always either label-stratified these datasets into 7:1:2 train-validation-
test folds or employed 5-fold cross-validation independently.Note that
the difference between Held-out and Independent lies in whether the
data comes from the same source as the pretraining data.

‘External’ (ext) is used for testing only and its data source is
different from training data (from either held-out or independent
cohorts) that was utilized to train task-specific models.

‘Zero-shot’ means that foundation models (e.g., mSTAR) are
directly applied to make slide-level predictions without further train-
ing, rather than relying on additional task-specific models.

The details of all evaluation datasets are demonstrated in Sup-
plementary Table 1.

Datasets. We present a description of each dataset used for evalua-
tion, including 7 categories of oncological applications, covering 15
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types of 97 practical clinical tasks. More details are summarized in
Supplementary Table 1.

BRCA_PathSubtype16 for Pathological Subtyping (2 classes). The
BRCA_PathSubtype (Breast Invasive Carcinoma) dataset are sourced
from TCGA including H&E diagnostic histopathology WSIs. This data-
set encompassed cases of primary IDC (Invasive Ductal Carcinoma)
and ILC (Invasive Lobular Carcinoma). After excluding slides with
inadequate proportional tumor, a total of 985 slides were gathered,
comprising 787 IDC and 198 ILC slides. Following the splits for pre-
training, which approximately yielded 7:1:2 train-validation-test folds
(656:95:234 slides), we ensure validation and test sets held out from
pretraining sources.

GBMLGG_PathSubtype16 and EBrains_PathSubtype17 for Pathologi-
cal Subtyping (3 classes). The GBMLGG_PathSubtype (Glioblastoma
andBrain LowerGradeGlioma)dataset comprises 1276H&Ediagnostic
histopathology WSIs in total, consisting of three classes subtypes:
Glioblastoma (GB) with 895 slides, Anaplastic Astrocytoma (AASTR)
with 164 slides and Oligodendroglioma (ODG) with 217 slides. Fol-
lowing the splits for pretraining,which approximately yields 7:1:2 train-
validation-test folds (839:200:237 slides), we ensurevalidation and test
sets held out from pretraining materials. To evaluation models’ gen-
eralizable ability, we collected samples of the same subtypes as
GBMLGG_PathSubtype fromEBrains17 database, leading to 732 slides as
an external cohort, EBrains_PathSubtype for pathological subtyping. It
consists of 559 slides of Glioblastoma (GB), 89 slides of Anaplastic
Astrocytoma (AASTR) and 84 slides of Oligodendroglioma (ODG).

HANCOCK_PathSubtype18 for pathological subtyping (3 classes).
HANCOCK_PathSubtype provides a dataset of head&neck tumors for
pathological subtyping of 3 categories: SCC_Conventional-Keratinizing
with 427 slides, SCC_Basaloid with 144 slides and SCC_Conventional-
NonKeratinizingwith 101 slides, resulting in 672 slides totally.We label-
stratified the dataset into 7:1:2 train-validation-test splits, yielding
470:68:134 slides.

TCGA-NSCLC16 for pathological subtyping (2 classes). The TCGA-
NSCLC (Non-Small Cell Lung Cancer) dataset comprised NSCLC H&E
diagnostic slides from TCGA, including cases of primary lung ade-
nocarcinoma (LUAD) and lung squamous cell carcinoma (LUSC).
After tissue segmentation, a total of 1,053 slides were obtained,
consisting of 541 LUAD and 512 LUSC slides. Similarly, we used the
same pretraining splits train-validation-test of an approximate ratio
7:1:2 (664:100:289 slides) to avoid data contamination.

NFGC_Lauren and YN3_Lauren for Lauren subtyping of gastric
cancer (3 classes). Lauren subtyping is a common classification sys-
tem for gastric cancer based on morphology, which typically divides
tumors into Diffuse-type, Intestinal-type and Mixed-type that indicate
different prognostic outcomes and treatment responses. We utilized
the TCGA-STAD dataset as an internal cohort to train a model for
Lauren classification. Since the data of TCGA-STAD has been used for
pretraining, we collected one external gastric cancer cohort
(NFGC_Lauren) of 388 slides from NanFang Hospital (NFH) and
another external cohort of 319 slides from the Third Affiliated Hospital
of Kunming Medical University in Yunnan (YN3_Lauren) for testing
only. NFGC consists of 159 slides of Diffuse-type, 102 slides of
Intestinal-type and 127 slides of Mixed-type. For YN3, there are
143 slides of Diffuse-type, 90 slides of Intestinal-type and 86 slides of
Mixed-type.

NFGC_PathSubtype, YN1_PathSubtype and YN3_PathSubtype for
pathological subtyping (3 classes). With TCGA-STAD as an internal,
we evaluate the ability of pathological subtyping for 3 crucial

categories: Tubular Stomach Adenocarcinoma, Signet Ring Cell Car-
cinoma of the Stomach and Stomach Adenocarcinoma. For external
validations, we collected 3 cohorts, NFGC_PathSubtype, YN1_Path-
Subtype and YN3_PathSubtype, from 3medical centers including NFH,
the First Affiliated Hospital of Kunming Medical University in Yunnan
(YN1) and YN3, leading to 385, 254 and 315 slides for testing only.
Specifically, NFGC_PathSubtype of NFH includes 166 slides of Tubular
Stomach Adenocarcinoma, 163 slides of Signet Ring Cell Carcinoma of
the Stomach and 66 slides of Stomach Adenocarcinoma. YN1_Path-
Subtype consists of 59 slides of Signet Ring Cell Carcinoma of the
Stomach and 195 slides of Stomach Adenocarcinoma, while
YN3_PathSubtype comprises 82 slides of Signet Ring Cell Carcinomaof
the Stomach and 233 slides of Stomach Adenocarcinoma. Note that all
data of external cohorts are used for testing only.

CAMELYON19,20 for breast metastasis detection (2 classes). This
dataset comprises 399 slides from the Cancer Metastases in Lymph
Nodes Challenge 2016 (CAMELYON16)19 and 500 slides from the
CAMELYON17 challenge20, resulting in 899 slides for the breast
metastasis detection of two classes ("normal” v.s. “metastasis”). After
removing a corrupted slide, we obtained a total of 898 WSIs (557
normal, 341 metastasis). For training and evaluation, we employed the
label-stratified 7:1:2 train-validation-test splits (629:90:179 slides).

NF_Metastatic, NF_Metastatic_Fine, QFS_Metastatic and QFS_Me-
tastatic_fine for lungmetastasis detection (2 classes and6 classes).
Lung Metastasis Detection includes two tasks: metastasis detection
and its primary site prediction, denoted by ‘Metastatic’ and ‘Metasta-
tic_Fine’. We curated NF_Metastatic dataset (1,198 slides, 705 cases)
from NFH, in which ‘Metastatic’ aims to identify if the tumor is meta-
static (314 cases) or primary (391 cases). Another dataset NF_Metasta-
tic_Fine (705 cases) is also established from NFH, in which
‘Metastatic_Fine’ is performed to predict the primary site of metastatic
cancer. The primary sites include six distinct classes: LUAD (391 cases),
breast (55 cases), colon (186 cases), kidney (25 cases), liver (34 cases),
and carcinoma of unknownprimary (CUP, 14 cases). Both two datasets
are label-stratified into 7:1:2 train-validation-test splits (493:70:142
cases). For external cohorts, we incorporated 530 WSIs (430 cases)
from Shandong Provincial Qianfoshan Hospital (QFS), leading to
QFS_Metastatic and QFS_Metastatic_Fine cohorts for testing only.
QFS_Metastatic dataset included 237 primary cases and 193 metastatic
cases, while QFS_Metastatic_Fine comprised 237 LUAD cases, 50breast
cases, 96 colon cases, 30 kidney cases, 10 liver cases, and 7 CUP cases.

NFGC_Perineural and YN3_Perineural for perineural invasion
detection in gastric cancer. The morphological presence of Peri-
neural Invasion (PNI) often indicates a more aggressive tumor and
poorer survival rates. As such, it is crucial for prognostic evaluation,
treatment decisions, and assessing recurrence risk to detect PNI. To
this end, NFGC_Perineural dataset (396 cases) was collected NFH,
consisting of 255 positive and 141 negative cases. As an internal
cohort for training and evaluation, the data was divided into training,
validation, and test sets in a ratio of 7:1:2 (277:39:80 cases). Fur-
thermore, an additional cohort of 319 cases (112 positive and 207
negative), YN3_Perineural, was obtained from YN3 for external
validation.

NFGC_Vascular and YN3_Vascular for vascular invasion detection
in gastric cancer. Vascular Invasion in gastric cancer indicates the
presence of tumor cells in blood vessels and is linked to poorer
prognosis, higher metastasis risk, and increased recurrence rates. To
identify it, we used a dataset consisting of 395 cases from NFH, known
as the NFGC_Vascular dataset. This dataset comprises 197 positive
cases and 198 negative cases. For model training and evaluation, the
data was divided into training, validation, and test sets in a 7:1:2 ratio.
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Furthermore, we included an external validation set of 319 cases from
YN3, which contains 122 positive and 197 negative cases.

PANDA21 for prostate ISUP grading (6 classes). Derived from the
PANDA challenge21, the ISUP (International Society of Urological
Pathology) grading task includes a collection of 10,616 prostate
cancer core needle biopsies for prostate cancer evaluation of 6
grades (also known as “classes”). After tissue segmentation, slides
with a low tumor proportion were excluded, which resulted in
10,202 slides. For training and evaluation, we label-stratified PANDA
into 7:1:2 train–validation–test folds (7,143:1,019:2,040 slides).

HANCOCK-TStage18 for pathological T-Staging (4 classes). In clin-
ical practice, pathologists will divide patients into different stages
according to the severity, which can guide treatment decisions and
assess the likelihood of metastasis. To assess this task, we utilize
HANCOCK-TStage dataset consisting of 705 patients and divided it
into 7:1:2 train–validation–test folds (496:67:128 cases) for validation.
To be specific, the dataset includes 259 T1, 256 T2, 123 T3 and 67
T4 cases.

18 TCGA datasets for mutation prediction. We used the public TCGA
data from the studies held out from pretraining materials to evaluate
the performance of gene-level mutation prediction. For every study,
we involve high-frequent mutated genes and FDA-approved drug-
related genes, leading to 17 datasets across 9 held-out studies. The
positive rates are presented in Supplementary Table 12. Additionally,
the prediction of tumor mutation burden (TMB), a predictive bio-
marker in solid tumors that is especially important for immunother-
apy, was also evaluated in the TCGA-NSCLC study.

5 CPTAC66 datasets for mutation prediction. With internal cohorts
from TCGA, we utilized the data from CPTAC database for external
validation on the ability ofmutation prediction. The datasets with over
100 cases and mutation rate of at least 30%, and overlap with internal
datasets are included, resulting in BRCA_PIK3CA (116 cases),
BRCA_TP53 (116 cases), BRCA_TTN (120 cases), LUAD_KRAS (175 cases)
and LUAD_EGFR (175 cases). The positive rates are presented in Sup-
plementary Table 12.

10 IHC biomarker datasets. Immunohistochemistry (IHC) typically
serves as the biomarker to assess tumor types and differentiation,
guide the choice of targeted and immunotherapies, and monitor
recurrence in clinical practice. We collected three IHC biomarkers
tasks from TCGA: estrogen receptor (ER) with 949 cases, progester-
one receptor (PR) with 948 cases, and human epidermal growth
factor receptor (HER2) with 646 cases. For training and evaluation,
these datasets are divided into train-val-test splits following the
pretraining splits to avoid data contamination.With these datasets as
internal cohorts, we curated the corresponding tasks from The First
Affiliated Hospital of Zhejiang University School of Medicine (ZJ1),
leading to IHC_ZJ1_ER (1548 cases), IHC_ZJ1_HER2 (1344 cases) and
IHC_ZJ1_PR (1556 cases) for testing only. As doctors in clinical settings
typically annotate the fine-grained labels for ER andHER2, we further
assessed their expression levels, resulting in two datasets: IHC_Z-
J1_ER_Level and IHC_ZJ1_HER2_Level with 7:1:2 splits (1083:154:311
cases for ER and 940:134:270 cases for HER2) for training and eva-
luation. Furthermore, we also evaluate other biomarkers commonly
seen in clinical practice: Cytokeratin 5 (CK5, 961 cases) of breast
cancer and Cytokeratin 7 (CK7, 419 cases) of lung cancer. For training
and evaluation, we divided them with 7:1:2 into train-val-test splits
(672:96:193 cases for CK5 and 293:42:84 cases for CK7). The label
distribution of these biomarkers can be found in Supplementary
Table 13 and 14.

BRCA_MolSubtype16 and ZJ1_Breast_MolSubtype for molecular
subtyping (4 classes). BRCA_MolSubtype is derived from TCGA,
consisting of Triple-Negative Breast Cancer (TNBC) (94 cases), HER2
(56 cases), LumA (228 cases) and LumB (127 cases) classes. For training
and evaluation, we label-stratified the dataset into train–validation-test
cohorts (323:53:129 cases). For external validation, an external cohort
was established with 2,045 cases (585 TNBC, 292 HER2, 307 LumA and
861 LumB).

GBMLGG_MolSubtype16 and EBrains_MolSubtype17 for molecular
subtyping (2 classes). GBMLGG_MolSubtype isderived fromTCGAfor
identifying IDH status, consisting of Positive (362 cases) and Negative
(190 cases) classes. For training and evaluation, we label-stratified the
dataset into train–validation-test cohorts (401:64:87 cases). For
external validation, an external cohort was established with 428 cases
(361 Positive and 67 Negative).

TCGA_HNSC_HPV16 and HANCOCK_HPV18 for molecular subtyping
(2 classes). HPV-p16 status is a significant prognostic biomarker
regradingdifferent outcomes. TopredictHPV-p16 status, we leveraged
TCGA_HNSC_HPV (405 cases) derived from TCGA as an internal cohort
for identifying HPV status, consisting of Positive (41 cases) and Nega-
tive (364 cases) classes. For training and evaluation, we label-stratified
the dataset into train–validation-test cohorts (284:39:118 cases). For
external validation, an external cohort was established with 332 cases
(191 Positive and 141 Negative).

CRC_MolSubtype16 formolecular prediction (4 classes). The dataset
(492 cases) used in this study is derived from the TCGA CRC (Colon
Adenocarcinoma and Rectum Adenocarcinoma) dataset, which
includes the Colon Adenocarcinoma (COAD) and Rectum Adeno-
carcinoma (READ) datasets. It comprises four consensus molecular
subtypes (CMSs): 74 CMS1, 211 CMS2, 68 CMS3 and 139 CMS4. To
facilitate training and evaluation, we stratified the dataset based on
labels into train-validation-test cohorts with proportions of 325:49:118
cases, respectively.

10 TCGAcohorts, 4 external cohorts and 2 independent cohorts for
survival prediction. "In pretraining splits, we employed case- and
label-stratified 7:1:2 training-validation-test splits for 9 TCGA cancer
datasets of over 400 cases. We evaluated the capability of survival
analysis on the same validation and test sets totally excluded from
pretraining data. More information about the 9 TCGA cancer datasets
were provided in Supplementary Table 32. We first evaluated 9 Overall
Survival (OS) tasks of TCGA across 9 cancer types. With OS_HNSC as
the internal cohort, we further collected OS_HANCOCK (747 cases) as
an external cohort. Given OS_BRCA as the internal cohort, we curated
OS_ZJ1 (454 cases) from ZJ1 of breast cancer for external validation.
Additionally, we further evaluate the DFS task of breast cancer on
TCGA, resulting in DFS_BRCA (878 cases), serving as the internal
cohort with the splits (619:84:175 cases). For external validation,
DFS_ZJ1 (454 cases)was curated as an external cohort. AlthoughTCGA-
STADwasnot heldout frompretrainingdata,weutilized it as a training
set to train amodel and evaluate it on the curated DFS_YN1 (260 cases)
sourced fromYN1 for external validation. For independent cohorts, we
curated OS_NFCRC (294 cases) of colon cancer from NFH for OS pre-
diction using 5-fold cross-validation, and meanwhile we utilized
RFS_HANCOCK (747 cases) for Recurrence-Free Survival (RFS) pre-
diction based on 5-fold cross-validation as well.

9 Survival prediction datasets for multimodal fusion. We collected
RNA-Seq data from cBioPortal for 9 TCGA held-out studies to evaluate
the performance of multimodal fusion. We followed the same splits as
those used in unimodal survival prediction tasks, and excluded those
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without the paired RNA-Seq data. The final splits of the train-val-test
are presented in Supplementary Table 1.

UBC-OCEAN67,68 for ovarian cancer subtyping (5 classes). The UBC-
OCEAN (University of British Columbia - Ovarian Cancer subtypE
clAssification and outlier detectioN) dataset consists of 538 slides,
which aims to classify ovarian cancer subtypes into 5 categories. After
performing tissue segmentation, a total of 527 slideswere acquired (98
CC, 122 EC, 221 HGSC, 43 LGSC and 43 MC). The class information is
presented in Supplementary Table 36.

BCNB datasets69 for ER (2 classes), PR (2 classes) and HER2 pre-
diciton (2 classes) of biopsy slides. The Early Breast Cancer Core-
Needle Biopsy (BCNB) WSI dataset, encompasses core-needle biopsy
WSIs obtained from patients diagnosed with early breast cancer. We
collected 1038 WSIs paired with ER, PR, HER2 status after tissue
extraction.

Pancancer TCGA16 and breast&lung datasets for zero-shot slide
retrieval. We utilized pan-cancer TCGA datasets (934 cases) held out
from pretraining data to evaluate the performance of Zero-shot Slide
Retrieval for Slide-to-Report (Image2Text) and Report-to-Slide
(Text2Image) retrieval. Furthermore, to evaluate the generalizability
of zero-shot slide retrieval, we curated another cohort consisting of
breast and lung cancers from ZJ1 and NFH, resulting in Breast&Lung
(500 cases) to ensure a sufficiently large search space. Given that ori-
ginal reports of ZJ1 and NFH are in Chinese, we first translated them
into English via GPT-4o-mini before performing retrieval.

TCGA dataset, nanfang and ZJ-first for pathological report gen-
eration. During pretraining, we employed training-validation-test
splits for some cancer datasets of over 400 cases and other data
were put into pretraining materials. Following this setting, we con-
sidered all pretraining data containing pathology reports as the
training set, and the held-out validation-test sets were re-used,
resulting in 7073:452:934 cases for train-validation-test splits. Given
TCGA dataset as the internal cohort, we additionally collected two
external cohorts: Nanfang (250 cases) and ZJ-First (250 cases) from
NFH and ZJ1 of lung cancer and breast cancer, respectively. Similarly,
considering original reports of ZJ1 and NFH are in Chinese, they are
translated into English via GPT-4o-mini before performing report
generation.

Evaluation metrics
For classification tasks,Macro-AUC and its 95% confidence interval (CI)
are reported considering alleviating the impact of unbalanced data,
which doesn’t depend on the selection of the decision threshold and is
not affected by the sample ratio of classes. For survival prediction
tasks, we report the commonly used Concordance Index (C-Index) and
its 95% CI, which is defined as the probability that two randomly
selected individuals will have risk predictions correctly ordered. For
zero-shot slide retrieval, we reported Recall @5, @10 and @50. In
pathological report generation, in linewith our prior studiesHistGen39,
we report various metrics, BLEU@K70, METEOR71 and ROUGE-L72, to
assess the accuracy of predicted captions against the ground-truth
captions from different perspectives. BLEU@Kmeasures the similarity
between machine-generated text and ground truth by comparing the
presence and frequency of n-grams.METEOR is ametric that evaluates
precision and recall by matching unigrams while also factoring in
synonyms and word variations between the original text and the
reference. On the other hand, ROUGE-L measures the similarity in
n-gram overlap between the generated texts and the ground truth.

Statistical analysis. Unless otherwise specified, we employ non-
parametric bootstrappingwith 1000 bootstrap73 replicates to estimate

95% confidence intervals (CI) for all experiments. For each evaluation
experiment, the model performing best in the validation split was
chosen to be evaluated on test sets or external sets. To assess the
observed differences in performance between the two models, we
utilize a one-sided Wilcoxon signed-rank test74 for statistical sig-
nificance, following the previous work4.

Computing software and hardware. We conducted all experiments
and analyses in this study using Python (v3.11.5) and PyTorch (v2.2.1,
CUDA 11.7) (https://pytorch.org) unless stated otherwise, and these
can be reproduced with open-source libraries as described below. To
pretrain aggregator, the implementation of the text encoder pre-
trained on PubMed was maintained by the codebase (https://github.
com/dmis-lab/biobert) and its pretrained weights can be assessed in
the open-source timm library fromHugging Face (https://huggingface.
co). For extractor pretraining, we initialize the backbone with the
pretrained weights of UNI codebase (https://github.com/
mahmoodlab/uni). OpenSlide (v3.4.1) and openslide-python (v1.3.1)
were utilized to support the processing of WSIs in conjunction with
CLAM. Implementations of other visual pretrained encoders com-
pared in the study canbe accessed through the following links: ResNet-
50 pretrained on ImageNet-1K (https://github.com/mahmoodlab/
CLAM), PLIP, CONCH, CHIEF and GigaPath (https://github.com/prov-
gigapath/prov-gigapath). Implementations of zero-shot learning for
WSIs were provided in MI-Zero (https://github.com/mahmoodlab/MI-
Zero). For training MIL models for downstream tasks, we adapted the
code of ABMIL from the CLAM codebase (https://github.com/
mahmoodlab/CLAM). For multimodal survival prediction, we used
the off-the-shelf multimodal fusion models: MCAT, Porpoise (https://
github.com/mahmoodlab/PORPOISE), MOTCat (https://github.com/
Innse/MOTCat) and CMTA. For pathological report generation, Hist-
Gen (https://github.com/dddavid4real/HistGen) is applied. We used
4 × 80 GB NVIDIA H800 GPUs (graphics processing unit) for pre-
training aggregator and a single 80 GB NVIDIA H800 GPU for pre-
training extractor. These GPUs were set up for multi-GPU, multi-node
training, employing distributed data-parallel (DDP) techniques. All
other experiments for downstream tasks were conducted on single 24
GB NVIDIA 3090 GPUs or single 80 GB H800 GPU.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data availability. This study incorporates a total of 97 oncological tasks
for downstream evaluation, in which 69 tasks are evaluated on public
datasets and 28 tasks are assessed on private cohorts. Pretraining data
consisted of whole-slide images (WSIs) and pathology reports from
TCGA (https://portal.gdc.cancer.gov/), and RNA-seq expression pro-
files from cBioPortal (https://www.cbioportal.org/). Downstream eva-
luations used publicly available datasets including a subset of TCGA
(https://portal.gdc.cancer.gov/), BCNB, CAMELYON16, CAMELYON17,
HANCOCK, PANDA (https://www.kaggle.com/c/prostate-cancer-
grade-assessment/data), UBC-OCEAN. Regarding the data from Nan-
fang Hospital of Southern Medical University (NFH), Shandong Pro-
vincial Qianfoshan Hospital (QFS), The First Affiliated Hospital of
Kunming Medical University in Yunnan (YN1), The Third Affiliated
Hospital of KunmingMedicalUniversity inYunnan (YN3), and The First
Affiliated Hospital of Zhejiang University School of Medicine (ZJ1),
these datasets are not publicly available due to patient privacy obli-
gations, institutional review board requirements, and data use agree-
ments. However, researchers interested in accessing deidentified data
may submit a request directly to the corresponding author, subject to
obtaining the necessary ethical approvals and complying with insti-
tutional policies. The details of these datasets are demonstrated in
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Supplementary Table 40. Source data for each figure or table are
provided with this paper. Source data are provided with this paper.

Code availability
The code and weights of mSTAR have been made available on GitHub
(https://github.com/Innse/mSTAR)75. Trained weights are available at
Hugging Face (https://huggingface.co/Wangyh/mSTAR). For reprodu-
cibility, we archived the exact version used in this study on Zenodo
with the DOI [10.5281/zenodo.17273573] and tagged release [v1.0.0].
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