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Version 0:
Reviewer comments:
Reviewer #2

(Remarks to the Author)

My comments on the authors’ replies to Reviewer 1’'s comments
Response to the Summary comment
| agree with Reviewer 1’s comment about the novelty of the study being limited.

| think the authors' 1st point on multimodality is relatively weak, as all those mentioned modalities, ie pathology reports and
gene expression profiles, have been used for help at slide/patient level tasks.

I do agree with the author’s 2nd point that allowing the tile encoder to be updated with slide/patient level pathology reports
and gene expression profiles is a novel contribution. However, | do find it difficult to understand the evaluation of contrastive
learning for pathology reports and gene expression profiles. As far as | understand, pathology reports do not usually contain
information about gene expression.

As for the 3rd point about the task, | do appreciate the added amount of work. | think authors are very thorough compared to
existing pathology foundation model papers. | do have concerns over the usability of some clinical end points, like disease-
free survival, which is often study and cohort-dependent. It could give a false sense of generality.

| think the authors have addressed comments 2-7,9,10.

As for comment 8, | find it confusing to include pathology reports for tasks like staging, grading and subtyping. The final
labels in those tasks are likely to be stated in the pathology report already.

To my comment on novelty, the authors give the same reply as to Reviewer 1’s question. Please see comments above.
The authors have addressed all my comments.

Minor question

What do the authors mean by “microscopic-level pathology slides” as an additional modality? | can see pathology reports

and gene expression profiles being used to train the slide-level model. | can not link “microscopic-level pathology slides” to
the training framework presented in the paper.



(Remarks on code availability)

Reviewer #3

(Remarks to the Author)

We thank the authors for their detailed response and commend the improved clarity and expanded ablation studies in the
revised manuscript. The new experiments systematically assess different combinations of pre-training modalities: pathology
images, pathology reports, and RNA-Seq data. Notably, the results indicate that for mSTAR, pre-training on pathology alone
performs comparably to combinations with either reports or RNA-Seq. A marginal performance gain of +0.01 in Avg C-Index
is observed only when all three modalities are combined. The authors interpret this as evidence of scalable multimodal
integration. But the tremendous pre-training effort that is required does not justify to use the mSTAR method compared to
other models like UNI or CONCH.

Previous literature has already demonstrated that dual-modality pre-training (e.g., pathology + reports or pathology + RNA-
Seq) can outperform unimodal pre-training. Thus, the added value of including a third modality with the specialized slide-
level contrastive learning and fine-tuning applied in this study remains insufficiently substantiated.

A key limitation of this work is the entanglement of two experimental variables: the introduction of a third pre-training
modality and a novel pre-training scheme involving fine-tuning of the image encoder (UNI). In contrast, models such as
GigaPath, Tangle, and CHIEF rely on frozen feature extractors, allowing clearer attribution of performance gains to specific
design choices. Without a controlled disentanglement of these factors, it becomes difficult to isolate the contribution of each
component to the final performance.

Furthermore, the study lacks an investigation into scaling laws with respect to model size, which are essential for
understanding the cost-benefit trade-offs of integrating additional modalities. Given the minimal performance improvements
reported, a detailed analysis of training efficiency and computational overhead is necessary to assess the practical utility of
the proposed approach.

Finally, if the goal is to evaluate modality scaling, we encourage the authors to consider broader avenues beyond RNA-Seq,
such as including IHC or other specialized stainings (e.g., https:/arxiv.org/abs/2408.02859), which have shown promising
results in conjunction with scaled transformer architectures.

In summary, while the manuscript presents a technically sound and ambitious effort, the performance improvements remain
marginal and lack sufficient justification given the added complexity. Clarification and additional analyses are required to
establish the value of the proposed multimodal pre-training strategy.

(Remarks on code availability)

Version 1:
Reviewer comments:
Reviewer #2

(Remarks to the Author)
| want thank the authors for throughly addressing all my comments. | have no further concerns with the manuscript.

(Remarks on code availability)

Reviewer #3

(Remarks to the Author)
| thank the authors for their efforts in addressing my concerns. All concerns have been addressed.

(Remarks on code availability)
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Dear reviewers,

We sincerely appreciate your acknowledgement of the novelty of approach and the
opportunity to submit a revised version of our manuscript. We have carefully addressed all
the remaining points raised during the second round of review, majorly including 1) re-
illustration of novelty, 2) investigation of impacts of various modalities, and 3) exploration
in the efficiency and effectiveness of modality scaling. The revision of manuscript has been
highlighted in red for reviewers' convenience.

We believe that these new revisions adequately address the reviewers' concerns. This study
could provide valuable contributions to the community of computational pathology.

Sincerely,
Authors of the manuscript



Next, we will offer the response to every reviewer point by point, where our response to your
comments is marked in blue.

Our response to Reviewer#2:

1. | think the authors' 1st point on multimodality is relatively weak, as all those mentioned
modalities, ie pathology reports and gene expression profiles, have been used for help at
slide/patient level tasks.

Response:

We appreciate the reviewer’s feedback regarding the novelty of our study. We respectfully
highlight two key aspects that distinguish our work from prior research:

1. Novelty in Multimodal Alignment and Scalability for Pathology Foundation Models:

While previous studies have indeed explored combinations of gene expression profiles
[1] for slide/patient-level tasks, they were limited to two modalities and focused
primarily on slide/patient-level aggregation. While TITAN [2] (29 Nov 2024 UTC) and
PRISM2 [3] (16 Jun 2025 UTC) also used pathology reports (vision-language models) in
their pathology foundation models, they were released later than our work (22 Jul
2024 UTC) and have not yet been formally published.
Our work is the first and only one to seamlessly align and validate the integration of
three distinct modalities: (e.g., pathology images, pathology reports and gene
expression profiles) within a unified framework. Crucially, we demonstrate the
scalability of this approach—showing that adding more modalities (beyond two
modalities) consistently improves performance. This scalability, empirically validated
in our experimental results (Section 2), has not been previously explored and offers a
meaningful advance for multimodal learning in pathology foundation models, where
multimodal data is abundant but underutilized.

2. Impact on Patch Extractor, Not Just Slide Aggregator: Related works [1-2]
incorporating additional modalities (e.g., gene expression profiles), focused primarily
on the role of aggregators. However, our study uniquely demonstrates that these
modalities also enhance the feature extractor itself, by comparing performances of
UNI [14] (baseline, before pretraining patch extractor) and mSTAR in Section 2.
Crucially, we highlight that improving the feature extractor (e.g., ViT-based encoder)
offers far greater scalability potential than optimizing aggregators. In computational
pathology, aggregators are typically shallow (e.g., 1-2 MLP layers) [4] or use
lightweight linear transformers [5] to handle thousands of patches efficiently. This
limited parameters inherently limits their capacity to absorb multimodal
information during pretraining. In contrast, feature extractors (e.g., ViT) have orders
of magnitude more parameters, enabling more powerful abilities in multimodal
information integration. This scaling law has has been validated in natural vision and
language domains [6-7]. Furthermore, since slide-level multimodal self-supervised
signals fail to guide patch-level feature extraction, the pretraining objectives'
misalignment of these two independent stages inevitably results in suboptimal
performance.

[1] Jaume G, Oldenburg L, Vaidya A, et al. Transcriptomics-guided slide representation
learning in computational pathology[C]//Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 2024: 9632-9644.



[2] Ding T, Wagner S J, Song A H, et al. Multimodal whole slide foundation model for
pathology[J]. arXiv preprint arXiv:2411.19666, 2024.

[3] Shaikovski G, Vorontsov E, Casson A, et al. PRISM2: Unlocking Multi-Modal General
Pathology Al with Clinical Dialoguel[J]. arXiv preprint arXiv:2506.13063, 2025.

[4] llse M, Tomczak J, Welling M. Attention-based deep multiple instance
learning[C]//International conference on machine learning. PMLR, 2018: 2127-2136.

[5] Shao Z, Bian H, Chen Y, et al. Transmil: Transformer based correlated multiple instance
learning for whole slide image classification[J]. Advances in neural information processing
systems, 2021, 34: 2136-2147.

[6] Oquab M, Darcet T, Moutakanni T, et al. Dinov2: Learning robust visual features without
supervision[J]. arXiv preprint arXiv:2304.07193, 2023.

[7] Radford A, Kim J W, Hallacy C, et al. Learning transferable visual models from natural
language supervision[C]//International conference on machine learning. PmLR, 2021: 8748-
8763.

2. |1 do agree with the author’s 2nd point that allowing the tile encoder to be updated with
slide/patient level pathology reports and gene expression profiles is a novel contribution.
However, | do find it difficult to understand the evaluation of contrastive learning for
pathology reports and gene expression profiles. As far as | understand, pathology reports do
not usually contain information about gene expression.

Response:

We thank the reviewer for raising this important point. We clarify the intrinsic link between
pathology reports and gene expression through two key aspects supported by clinical practice
and biological evidence:

1. Pathology reports routinely include molecular profiling data. Standard pathology
reports (especially for cancer diagnostics) frequently incorporate molecular testing
results such as: Immunohistochemistry (IHC) markers (e.g., ER/PR/HER2 status in
breast cancer, PD-L1 in lung cancer), targeted gene sequencing (e.g., EGFR, KRAS
mutations), in-situ hybridization (ISH) for gene amplification (e.g., HER2 FISH), etc. As
shown in Figure 1, two examples of pathology reports used in pretraining explicitly
documenting these molecular information highlighted in the red box, directly
reflecting gene expression phenotypes.

2. Morphological features in histology are biomarkers of gene activity. The
connection between histopathology and gene expression is biologically fundamental:
(1) IHC visualizes protein expression products of specific genes (e.g., HER2 protein
overexpression from ERBB2 gene amplification [8]). (2) Histomorphological patterns
included in reports (e.g., granulomatous inflammation in lung cancer in the green
box of Figure 1) correlate with upregulation of checkpoint molecules (e.g., PD-L1 [9-
10] ).

Thus, pathology reports establish phenotype-genotype correlations through both direct
molecular profiling and morphology-derived biomarkers.



[8] Yoon H H, Shi Q, Sukov W R, et al. Association of HER2/ErbB2 expression and gene
amplification with pathologic features and prognosis in esophageal adenocarcinomas[J].
Clinical Cancer Research, 2012, 18(2): 546-554.

[9] Braun N A, Celada L J, Herazo-Maya J D, et al. Blockade of the programmed death-1
pathway restores sarcoidosis CD4+ T-cell proliferative capacity[J]. American journal of
respiratory and critical care medicine, 2014, 190(5): 560-571.

[10] Cornejo C M, Haun P, English 1l J, et al. Immune checkpoint inhibitors and the
development of granulomatous reactions[J]. Journal of the American Academy of
Dermatology, 2019, 81(5): 1165-1175.

E. BREAST, RIGHT, MASTECTOM!
- TWO FOCI OF INVASIVE DUCTAL CARC!NOMA
- SBR GRADE 3, MEASURING 1.1-CM
SER GRADE 2 MEASURING 0.6-CM
EAR GRADE, DUCTAL CARCINOMA IN SITU, SOLID AND CRIBRIFORM TYPES
suRGIcAL RESECTION MARsle NEGATNE FOR TUMOR
- BIOPSY SITE CHANGES WITH FI
- FIBROADENOMA AND SCLEROSING ADENOSIS
- SEE SYNOPTIC REPORT AND SEE NOTE

NOTE: Left axillary sentine} lymph node #2 touch preparation is negative. Therefore, the false- negl(lm(y isdueto
iow).

'sampling error. The morphology of metastatic tumor is similar to the larger grade 3 tumor (see bel ‘COMMENT
This case was initially signed out as a provisional report on !

In the left tectom) 2 nodules identified, lar nodule located in UOQ 1.6 and

e Y ¥ speciarn, 2 nodules are Grosal e s Al Liarstricd Sl , and has been amended to include results of immunohistochemica

of grade 3; and a smaller nodule, located in posterior UIQ, measuring 0.5-cm and s of grade 1. Breast biomarkers on

both nodules are pending. stains. The diagnoses have not changed from the original report.

o e s s Srat ot o vsv Gucat o The BSOS vt ot s 1 o § The Iyaphnodes.resected in Chaiomse (specimenii-$] ahow:diStuse
is of grade 3. Breast biomarkers are as follows, ER negative, PR negative and HER-2/neu equivocal (2+, FISH involvement with well-formed non-necrotizing granulomatous inflammation.
pending). The smaller nodule measures 0.6-cm and it is of grade 2. The breast biomarkers are as follows ER Ozcat\:i:nal mix:d dust ;odulos wi:h c:n:::llhyzliniz?tlog andlfoial N
positive, PR positive and HER-2/neu equivocal (2+, FISH pending). central necrosis are also present. Special stains for fungal elements
- - and acid-fast organisms are negative. There is no evidence of metastatic
Also, the of grade 3 tumors (right and lef) is diferent. It seems that there are 4 different primary tumors, carcinoma in any of the lymph nodes examined.
2iméacibreast e _carcincns in any of the lyneh rodes exdnined
r RIPY T sctions of the tumor in 8 show 1y 1y
§:,"c?,,'f.7,'.§.‘,fimr it et differentiated squamous cell carcinoma (90%), with a small component
Specimens:  E: RIGHT BREAST (10%) of a poorly differentiated spindle cell carcinoma that demonstrates
shows multiple mitoses and severe cytologic atypia. There is no
Specimen:  Surgical Excision 24 L £id 5 Koletal le identified ia th indl
Slock N, RS o arior cell stry shows the squamous cell component
ER: Negative Allred Score: 0 = Proportion Score 0 + Intensity Score 0 of the tumor to be positive for multiple cytokeratins (HMWK, CK5/6,
PR: Negative Alired Score: 0 = Proportion Score 0 + Intensity Score 0 AE1/AE3) and p63. The spindled component shows weak positive staining
(COMMENT: for CK5/6 and p63, with very focal positive staining for CK7. The EGFR
MM
The Allred score for estrogen and progesterone receptors is calculated by adding the sum of the proportion score shows “f°"g‘ I in S e s in dlzgt::o‘ mz:tthenoth
(0 = no staining, 1 = <1% of cells staining, 2 = 1 - 10% of cells staining, 3 = 11-30% of cells staining, 4 = 31-60% of Y and the sp ompon¢
cells staining, 5 = >60% of cells staining) to the intensity score (1 = weak meensnynfmlmng 2 = intermediate components are negative for pS53 and ’A"L‘F 1. The tindingn are consistent
intensity of staining, 3 = strong intensity of staining), with a scoring range from 0 with a pleomorphic carcinoma
ER/PR positive is defined as an Allred score of >2 and ER/PR negative |sdefned s an Allred score of less than ai ated, 90” and pleomorphic spindle-cell
or equal to 2.
METHODOLOGY: o o a1 . carcinoma (poorly differentiated, 10%), pPT2NO.
Tissue was fixed in 10% neutral buffered formalin for no less than 8 and no longer than 24 hours.
Immunohistochemistry was performed using the mouse anti-human ER (ER 1D5, 1:100) and PR (PGR 136, 1:100) The residual lung parenchyma in both specimen 1 ("wedge resection right
provided by Dako - ) following the manufacturer s instructions. nmau:y1 wals mr;ot;nodmod middle lobe") and specimen 8 ("right lower lobe") shows patchy
of the ER/PR i i is guided by published resuits in the medical literature, intexrstitial fibrosis that appears accentuated in a subpleural
information provided by the reagent manufacturer and I_rx!mem-ll review of staining performance. distribution, with focal aregrot architectural remodel‘l’ng and cyst
PathVysion HER-2 DNA Probe Kit formation (microscopic honeycomb change). There is mild chronic
Case No interstitial inflammation associated with areas of fibrosis. Fibroblastic
Analytical Interpretation of Results: HER-2 NOT AMPLIFIED foci are readily identified. The blood vessels show focal fibrointimal
Clinical Interpretation of results thickening, likely y to the infl Y , but
Ampiification of the HERZganewas evaluated with interphase fluorescence in-situ no diagnostic evidence of active vasculitis, Granulomas are noted within
(FISH) on formalin-fixed paraffin tissue sections using a chromosome an intraparenchymal lymph node (specimen 1), but are not identified in
17 centromeric probe and a HER-2 probe that spans the entire HER-2 gene in the the lung parenchyma itself.
by Dr. A majority of tumors cells displayed 2 chromosome 17
signals and 2 HER-2 signals, with a HER-2/CEP 17 Ratio </=2.0, consistent with no
amplification of the HER2/neu gene. .ne overall findings in the lung tissue are in keeping with pulmonary
Blockused  E5 Source of case:
Tissue fixation formalin-fixed tissueOutside Case No:  NA
Tissue source breast Results interpreted: yes Status: corrected Page: 3 of 6
HER2/CEP17 ratio: 1.03

This ratio is derived by dividing the total number of LS| HER-2/neu signals by the total number of

CEP17 signals in at least 20 interphase nuclei with nonoverlapping nuclei in the neoplastic

‘mammary epithelial cells. Cells with no signals or with signals of only one color are disregarded.
Method of ratio enumeration: manual count

(a) TCGA-E2-A158 from TCGA-BRCA (b) TCGA-18-4086 from TCGA-LUSC

Figure 1. Examples of pathology reports. (a) from breast cancer and (b) from lung cancer,
where the text highlighted in the red box demonstrates the connection between pathology
reports and gene expression profiles, and the one in the green box showcases the
morphological descriptions in pathology reports.

3. As for the 3rd point about the task, | do appreciate the added amount of work. | think
authors are very thorough compared to existing pathology foundation model papers. | do
have concerns over the usability of some clinical end points, like disease-free survival, which
is often study and cohort-dependent. It could give a false sense of generality.

Response:

We sincerely appreciate the reviewer's recognition of our comprehensive evaluation
framework and their thoughtful concerns regarding the clinical endpoints. We fully
acknowledge that endpoints like disease-free survival (DFS) and recurrence-free survival (RFS)
can indeed vary across studies, and all endpoints in our study were chosen based on their
broad usage in clinical oncology and alignment with public datasets, e.g. DFS for breast cancer



and gastric cancer, and RFS for head and neck cancer. We believe this preserves the clinical
utility that makes our findings meaningful for both researchers and practicing oncologists.

4. As for comment 8, | find it confusing to include pathology reports for tasks like staging,
grading and subtyping. The final labels in those tasks are likely to be stated in the pathology
report already.

Response:

Sorry for confusion, and we appreciate the reviewer’s attention to evaluation validity. We
want to clarify that the data used for downstream evaluation were rigorously excluded from
pretraining data, and pathology reports were only used during pretraining (for multimodal
alignment with WSlIs). All downstream tasks were evaluated using H&E diagnostic slides only
as the input with no text data. This aligns with standard foundation model paradigms (e.g.,
CONCH [11], where text aids pretraining but isn’t available during inference). This clarification
has been added in Methods section 4.3.

[11] Lu M Y, Chen B, Williamson D F K, et al. A visual-language foundation model for
computational pathology[J]. Nature medicine, 2024, 30(3): 863-874.

5. Minor question:

What do the authors mean by “microscopic-level pathology slides” as an additional modality?
| can see pathology reports and gene expression profiles being used to train the slide-level
model. | can not link “microscopic-level pathology slides” to the training framework presented
in the paper.

Response: We sincerely appreciate the reviewer's careful reading and this opportunity to
clarify our terminology. We acknowledge that the phrase "microscopic-level pathology slides"
in our original manuscript caused confusion, and we have removed this potentially ambiguous
expression in our revised version. The term "microscopic-level" was intended to suggest that
histopathology slides are examined under microscopes during clinical diagnosis, and we have
removed it in the revised manuscript.



Our response to Reviewer#3:

1. We thank the authors for their detailed response and commend the improved clarity and
expanded ablation studies in the revised manuscript. The new experiments systematically
assess different combinations of pre-training modalities: pathology images, pathology reports,
and RNA-Seq data. Notably, the results indicate that for mSTAR, pre-training on pathology
alone performs comparably to combinations with either reports or RNA-Seq. A marginal
performance gain of +0.01 in Avg C-Index is observed only when all three modalities are
combined. The authors interpret this as evidence of scalable multimodal integration. But the
tremendous pre-training effort that is required does not justify to use the mSTAR method
compared to other models like UNI or CONCH.

Previous literature has already demonstrated that dual-modality pre-training (e.g., pathology
+ reports or pathology + RNA-Seq) can outperform unimodal pre-training. Thus, the added
value of including a third modality with the specialized slide-level contrastive learning and
fine-tuning applied in this study remains insufficiently substantiated.

Response:

We thank the reviewer for engaging deeply with our revised analyses. We address the
concerns about multimodal scalability through new evidence that substantiates the unique
advantages of our approach:

1) The impact of multimodal data on performance gains differs significantly depending on
the task type. While the previous version only reported average overall survival (OS) results
across 9 TCGA datasets, in this revised manuscript we have systematically evaluated
proportional datasets for each task category (24 datasets), as shown in Figure 2a.

The results demonstrate consistent performance improvements across all types of tasks, with
a notable average increase of 5.3% specifically observed in the 12 molecular prediction tasks
compared to that of only 2 modalities. More interestingly, we found that text modalities
outperform genomic data in diagnostic tasks, which intuitively corresponds to the diagnostic-
rich nature of pathology reports. For molecular and prognostic predictions, textual and
genomic data demonstrated comparable performance, consistent with prior findings [12] that
both phenotype (text-derived) and genotype features contribute to stratification.

Given the substantial heterogeneity across cancer types and varying prediction difficulty
among tasks, we found that average performance metrics were insufficient to reflect true
improvements. Therefore, we also present detailed task-specific performance for each
dataset in Figure 3. In 21 out of 24 datasets, the three-modality models demonstrated
consistent performance improvements over dual-modality combinations.

2) mSTAR’s design is highly resource-efficient, while achieve comparable performance with
SOTA pathology foundation models.

e Parameter-wise, compared to Virchow [13] of 631M, a SOTA pathology foundation
model, mSTAR merely consists of 415M (34% reduction) parameters including the
303M visual encoder (the same as UNI [14]), 2.67M TransMIL module, 0.94M genomic
Performer, and 108M BioBERT text encoder (smaller than CONCH [11]).

e Data-wise, when benchmarked against UNI's performance baseline, we compared
mMSTAR with Virchow as shown in Figure 2d. mSTAR achieves competitive
improvements with only 22K additional slide-level pretraining samples—a far smaller




fraction of the 1.39M extra slides required by Virchow for better performance gains.
This 53x reduction in additional data demonstrates that multimodal data brought
higher efficiency per sample compared to vision-only brute-force data scaling,
significantly reducing pretraining costs in GPU-hours while even enhancing clinical-
grade accuracy. Our findings offer a remarkable advantage and a practical pathway in
scaling pathology foundation models, especially for resource-constrained medical Al
development where large-scale data collection is often impractical.

e Training-wise, while UNI requires 4x8 A100 80GB GPUs (4 nodes, each with 8 GPUs)
for 32 GPU hours (1024 GPU hours in total), mSTAR merely needs 4 H800 80GB GPUs
(1 node, each with 4 GPUs) for 7 days (672 GPU hours in total). While Virchow does
not report exact training durations, its substantially larger model size (631M vs. our
414M parameters) and 53x greater pretraining data (1.39M vs. our 22K slides)
inevitably require far greater computational resources. More comparison can be seen
in Table 1 and 2.

The improvement is substantial in the current context. mSTAR achieves Virchow's
performance with just 2% of its additional pretraining data—a clear indication that the
achieved improvements are not only substantial but also highly efficient. This reveals that
multimodal scaling yields substantially greater returns than large-scale vision-only expansion,
effectively liberating the field of PFMs from reliance on massive slide collections.

Table 1, Resources Comparison between scaling slides only (Virchow) v.s. scaling modalities
(mSTAR) for pretraining, with UNI as a baseline. * means that the pretraining GPU hours are
coarsely estimated based on that of UNI, since it didn't report such pretraining details.

Models | #Params | # Pretraining Slide-level Data | # Pretraining GPU hours

UNI | 303M | 100,426 | 1,024 80G A100 GPU hours

Virchow | 631M | 1,488,550 | 1,024 x 2 x 15 80G A100 GPU hours*
mSTAR (all) | 415M | 100,426 + 22,127 | 672 80G H800 GPU hours

Table 2, Performance Comparison between scaling slides only (Virchow) v.s. scaling
modalities (MSTAR) for pretraining, with UNI as a baseline. The best-performing model for
each metric is bolded. Std is given by bootstrapping with 1,000 bootstraps. Both Virchow and
mMSTAR underwent one-sided Wilcoxon signed-rank tests against the baseline UNI. For results
outperforming the baseline, all unmarked (*) ones exhibited statistically significant
differences at P < 0.001.



Task

Dataset

UNI

Virchow

mMSTAR

Pathlogical Diagnosis
Pathlogical Diagnosis
Pathlogical Diagnosis
Molecular Prediction
Molecular Prediction
Molecular Prediction
Molecular Prediction
Molecular Prediction
Molecular Prediction
Molecular Prediction
Molecular Prediction
Molecular Prediction
Survival Prediction
Survival Prediction
Survival Prediction
Survival Prediction
Survival Prediction
Survival Prediction
Survival Prediction
Survival Prediction
Survival Prediction

CAMELYON (idpt)
NFGC_Perineural (idpt)
BRCA-PathSubtype (out)
BRCA_PIK3CA (out)
TCGA_BRCA_HER2 (out)
TCGA_BRCA_PR (out)
BRCA_MolSubtype (out)
IHC_ZJ1_HER2_Level (idpt)
IHC_ZJ1_ER_Level (idpt)
IHC_ZJ1_HER2 (ext)
IHC_ZJ1_PR (ext)
ZJ1_Breast_MolSubtype (ext)
OS_BRCA (out)

OS_CRC (out)
OS_GBMLGG (out)
OS_HNSC (out)
OS_KIRC (out)

OS_LUAD (out)
OS_LUSC (out)
OS_SKCM (out)
OS_UCEC (out)

0.9819+0.0184
0.9750+0.0349
0.9391+0.0489
0.6969+0.0315
0.7636+0.0305
0.5028+0.0195
0.7756+0.0219
0.7758+0.0132
0.7892+0.0111
0.6153+0.0173
0.5490+0.0052
0.7844+0.0046
0.6908+0.1048
0.6906+0.0835
0.7905+0.0434
0.6516+0.0798
0.7155+0.0659
0.6312+0.0996
0.6273+0.0771
0.6254+0.0776
0.7845+0.1012

0.9683+0.0248
0.9270+0.0685
0.9449+0.0526
0.6669+0.0492
0.7287+0.0506
0.5080+0.0258
0.7659+0.0301
0.7628+0.0196
0.7960+0.0152
0.6558+0.0226
0.5733+0.0063
0.7582+0.0066
0.6525+0.0506
0.6140+0.0577
0.7790+0.0206
0.6000+0.0381
0.6967+0.0395
0.6194+0.0457
0.5382+0.0463
0.6207+0.0423
0.7477+0.0556

0.9935+0.0098
0.9776+0.0316
0.9314+0.0510
0.7215+0.0318
0.7679+0.0310
0.5254+0.0183
0.8057+0.0191
0.7951+0.0125
0.8020+0.0107
0.6429+0.0162
0.5673+0.0047
0.7946+0.0045
0.7076+0.0896
0.6895+0.0836
0.7923+0.0426
0.6604+0.0794
0.7027+0.0890
0.6329+0.0976
0.6323+0.0785
0.6281+0.0761
0.8092+0.0865

[12] Cuny M, Kramar A, Courjal F, et al. Relating genotype and phenotype in breast cancer: an
analysis of the prognostic significance of amplification at eight different genes or loci and of
p53 mutations[J]. Cancer research, 2000, 60(4): 1077-1083.

[13] Vorontsov E, Bozkurt A, Casson A, et al. A foundation model for clinical-grade
computational pathology and rare cancers detection[J]. Nature medicine, 2024, 30(10): 2924-

2935.

[14] Chen R J, Ding T, Lu M Y, et al. Towards a general-purpose foundation model for
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Figure 2. Ablation Studies. a, averaged performance on pathological diagnosis (3 datasets),
molecular prediction (12 datasets) and survival prediction (9 datasets) , where "Before' refers
to before pretraining, and 'P', 'T'and 'G' indicate pathology slides, pathology reports and gene
data, respectively. b, visualization of feature space evolution: from before pretraining (initial)
to Stage 1 (pretrained aggregator) and Stage 2 (mSTAR), where the areas in red bounding box
are multiple tumor regions (1-7) of the case of patient_042_node_3 of CAMELYON17 dataset.
Note that different tumor areas correspond to different spatial positions. ¢, averaged
performance (9 TCGA OS datasets) for ablating different pretraining objectives (Inter-modal
Loss and Inter-cancer Loss) for survival prediction. d, averaged performance (24 datasets) and
resources comparisons between scaling slides only (Virchow) v.s. scaling modalities (mSTAR)
for pretraining, with UNI as a baseline. Detailed performances of every dataset are presented
in Figure 3 and detailed comparisons are showcased in Table 1 and 2.
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Figure 3. Performance on each dataset in ablation studies (24 datasets), where the red curve
indicates the trajectory of ‘before pretraining - + genes - + text’, while the green one
represents the trajectory of ‘before pretraining - + text - + genes’. One-sided Wilcoxon



signed-rank tests were conducted for every pairwise comparisons along the trajectory. Unless
otherwise specified, reported differences are statistically significant (P < 0.05). (Zoom in for
details.)

2. A key limitation of this work is the entanglement of two experimental variables: the
introduction of a third pre-training modality and a novel pre-training scheme involving fine-
tuning of the image encoder (UNI). In contrast, models such as GigaPath, Tangle, and CHIEF
rely on frozen feature extractors, allowing clearer attribution of performance gains to specific
design choices. Without a controlled disentanglement of these factors, it becomes difficult to
isolate the contribution of each component to the final performance.

Response:

We appreciate the reviewer’s insightful observation regarding the need to disentangle the
effects of our methodological innovations. We would like to clarify that our experimental
design explicitly decouples these variables through staged evaluations and controlled
comparisons:

1) Disentangling the Third Modality Contribution: The introduction of the third modality
(gene data or pathology reports) is only involved in the pre-training of aggregator at the Stage
1. Therefore, to demonstrate its contribution, we only need to compare the performance of
pretraining on three modalities with ‘before aggregator pre-training’ and ‘after pre-training
with two modalities’. As shown in Figures 2 and 3, and discussed in Question 1's answer
(points 1 and 2), the three-modality approach demonstrates superior performance both in
terms of average results and task-specific dataset.

2) Disentangling the Novel Pre-training Scheme: The novel pre-training scheme consists of
two stages. Stage 1 focuses on training the aggregator while keeping the extractor frozen. Its
effectiveness is evaluated by ablating the contribution of the third pre-training modality (as
previously discussed). Stage 2 performs self-taught training of the extractor with the
aggregator frozen. Quantitatively, one the one hand, as shown in Fig. 2a, the performance on
P+T+G (three modalities) outperforms that of ‘before pretraining’, which validates the
effectiveness of Stage 1. On the other hand, the extractor’s improvement is validated by
comparing its performance to the UNI, the baseline model (before self-taught training), with
results verified across 97 tasks. This underscores the contribution of Stage 2. Qualitatively,
from a feature-space perspective, we visualize the evolutionary dynamics of each stage in Fig.
2b. The clusters progressively coalesce, demonstrating clear separation between tumor and
non-tumor regions as training advances. Both quantitative performance evaluation and
gualitative feature-space visualization consistently verify the effectiveness of each training
phase.

3. Furthermore, the study lacks an investigation into scaling laws with respect to model size,
which are essential for understanding the cost-benefit trade-offs of integrating additional
modalities. Given the minimal performance improvements reported, a detailed analysis of
training efficiency and computational overhead is necessary to assess the practical utility of
the proposed approach.

Response:



We appreciate the reviewer's suggestion regarding scaling laws and computational trade-offs,
and we have discussed this in the Section 3. While we agree these are important
considerations, our study specifically investigates modality scalability rather than model size
scaling, as the latter has been extensively examined in prior foundation model research
[13][15]. Our work builds upon these established scaling principles while focusing on the novel
dimension of multimodal integration. A detailed analysis of training efficiency and
computational overhead is provided in points 3 and 4 of the Question 1's answer, along with
Table 1.

[15] Zimmermann E, Vorontsov E, Viret J, et al. Virchow2: Scaling self-supervised mixed
magnification models in pathology[J]. arXiv preprint arXiv:2408.00738, 2024.

5. Finally, if the goal is to evaluate modality scaling, we encourage the authors to consider
broader avenues beyond RNA-Seq, such as including IHC or other specialized stainings (e.g.,
https://arxiv.org/abs/2408.02859), which have shown promising results in conjunction with
scaled transformer architectures.

Response:

We sincerely appreciate this insightful suggestion regarding broader modality scaling avenues,
including IHC and specialized stained slides. The proposed direction aligns perfectly with our
long-term vision of extensible multimodal learning in computational pathology and we are
working on that. In the current work, we focused on establishing a robust pretraining
framework for integrating three fundamental data types. We thank the reviewer for
highlighting this important research trajectory that advances our shared goal of
comprehensive multimodal integration for advancing precision oncology. As noted in our
Discussion (Section 3), we recognize this as a critical future direction.
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