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Version 0: 

Reviewer comments: 

Reviewer #2 

(Remarks to the Author) 

My comments on the authors’ replies to Reviewer 1’s comments 

Response to the Summary comment 

I agree with Reviewer 1’s comment about the novelty of the study being limited. 

I think the authors' 1st point on multimodality is relatively weak, as all those mentioned modalities, ie pathology reports and
gene expression profiles, have been used for help at slide/patient level tasks. 

I do agree with the author’s 2nd point that allowing the tile encoder to be updated with slide/patient level pathology reports
and gene expression profiles is a novel contribution. However, I do find it difficult to understand the evaluation of contrastive
learning for pathology reports and gene expression profiles. As far as I understand, pathology reports do not usually contain
information about gene expression. 

As for the 3rd point about the task, I do appreciate the added amount of work. I think authors are very thorough compared to
existing pathology foundation model papers. I do have concerns over the usability of some clinical end points, like disease-
free survival, which is often study and cohort-dependent. It could give a false sense of generality. 

I think the authors have addressed comments 2-7,9,10. 

As for comment 8, I find it confusing to include pathology reports for tasks like staging, grading and subtyping. The final
labels in those tasks are likely to be stated in the pathology report already. 

To my comment on novelty, the authors give the same reply as to Reviewer 1’s question. Please see comments above. 

The authors have addressed all my comments. 

Minor question 

What do the authors mean by “microscopic-level pathology slides” as an additional modality? I can see pathology reports
and gene expression profiles being used to train the slide-level model. I can not link “microscopic-level pathology slides” to
the training framework presented in the paper. 



(Remarks on code availability) 

Reviewer #3 

(Remarks to the Author) 
We thank the authors for their detailed response and commend the improved clarity and expanded ablation studies in the
revised manuscript. The new experiments systematically assess different combinations of pre-training modalities: pathology
images, pathology reports, and RNA-Seq data. Notably, the results indicate that for mSTAR, pre-training on pathology alone
performs comparably to combinations with either reports or RNA-Seq. A marginal performance gain of +0.01 in Avg C-Index
is observed only when all three modalities are combined. The authors interpret this as evidence of scalable multimodal
integration. But the tremendous pre-training effort that is required does not justify to use the mSTAR method compared to
other models like UNI or CONCH. 
Previous literature has already demonstrated that dual-modality pre-training (e.g., pathology + reports or pathology + RNA-
Seq) can outperform unimodal pre-training. Thus, the added value of including a third modality with the specialized slide-
level contrastive learning and fine-tuning applied in this study remains insufficiently substantiated. 
A key limitation of this work is the entanglement of two experimental variables: the introduction of a third pre-training
modality and a novel pre-training scheme involving fine-tuning of the image encoder (UNI). In contrast, models such as
GigaPath, Tangle, and CHIEF rely on frozen feature extractors, allowing clearer attribution of performance gains to specific
design choices. Without a controlled disentanglement of these factors, it becomes difficult to isolate the contribution of each
component to the final performance. 
Furthermore, the study lacks an investigation into scaling laws with respect to model size, which are essential for
understanding the cost-benefit trade-offs of integrating additional modalities. Given the minimal performance improvements
reported, a detailed analysis of training efficiency and computational overhead is necessary to assess the practical utility of
the proposed approach. 
Finally, if the goal is to evaluate modality scaling, we encourage the authors to consider broader avenues beyond RNA-Seq,
such as including IHC or other specialized stainings (e.g., https://arxiv.org/abs/2408.02859), which have shown promising
results in conjunction with scaled transformer architectures. 
In summary, while the manuscript presents a technically sound and ambitious effort, the performance improvements remain
marginal and lack sufficient justification given the added complexity. Clarification and additional analyses are required to
establish the value of the proposed multimodal pre-training strategy. 

(Remarks on code availability) 

Version 1: 

Reviewer comments: 

Reviewer #2 

(Remarks to the Author) 
I want thank the authors for throughly addressing all my comments. I have no further concerns with the manuscript. 

(Remarks on code availability) 

Reviewer #3 

(Remarks to the Author) 
I thank the authors for their efforts in addressing my concerns. All concerns have been addressed. 

(Remarks on code availability) 
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Dear reviewers,  
We sincerely appreciate your acknowledgement of the novelty of approach and the 
opportunity to submit a revised version of our manuscript. We have carefully addressed all 
the remaining points raised during the second round of review, majorly including 1) re-
illustration of novelty, 2) investigation of impacts of various modalities, and 3) exploration 
in the efficiency and effectiveness of modality scaling. The revision of manuscript has been 
highlighted in red for reviewers' convenience. 
We believe that these new revisions adequately address the reviewers' concerns. This study 
could provide valuable contributions to the community of computational pathology. 
 
Sincerely, 
Authors of the manuscript 
 
  



Next, we will offer the response to every reviewer point by point, where our response to your 
comments is marked in blue. 

Our response to Reviewer#2:  

1. I think the authors' 1st point on multimodality is relatively weak, as all those mentioned 
modalities, ie pathology reports and gene expression profiles, have been used for help at 
slide/patient level tasks. 

Response:  

We appreciate the reviewer’s feedback regarding the novelty of our study. We respectfully 
highlight two key aspects that distinguish our work from prior research: 

1. Novelty in Multimodal Alignment and Scalability for Pathology Foundation Models: 
While previous studies have indeed explored combinations of gene expression profiles 
[1] for slide/patient-level tasks, they were limited to two modalities and focused 
primarily on slide/patient-level aggregation. While TITAN [2] (29 Nov 2024 UTC) and 
PRISM2 [3] (16 Jun 2025 UTC) also used pathology reports (vision-language models) in 
their pathology foundation models, they were released later than our work (22 Jul 
2024 UTC) and have not yet been formally published.  
Our work is the first and only one to seamlessly align and validate the integration of 
three distinct modalities: (e.g., pathology images, pathology reports and gene 
expression profiles) within a unified framework. Crucially, we demonstrate the 
scalability of this approach—showing that adding more modalities (beyond two 
modalities) consistently improves performance. This scalability, empirically validated 
in our experimental results (Section 2), has not been previously explored and offers a 
meaningful advance for multimodal learning in pathology foundation models, where 
multimodal data is abundant but underutilized. 

2. Impact on Patch Extractor, Not Just Slide Aggregator: Related works [1-2] 
incorporating additional modalities (e.g., gene expression profiles), focused primarily 
on the role of aggregators. However, our study uniquely demonstrates that these 
modalities also enhance the feature extractor itself, by comparing performances of 
UNI [14] (baseline, before pretraining patch extractor) and mSTAR in Section 2. 
Crucially, we highlight that improving the feature extractor (e.g., ViT-based encoder) 
offers far greater scalability potential than optimizing aggregators. In computational 
pathology, aggregators are typically shallow (e.g., 1–2 MLP layers) [4] or use 
lightweight linear transformers [5] to handle thousands of patches efficiently. This 
limited parameters inherently limits their capacity to absorb multimodal 
information during pretraining. In contrast, feature extractors (e.g., ViT) have orders 
of magnitude more parameters, enabling more powerful abilities in multimodal 
information integration. This scaling law has has been validated in natural vision and 
language domains [6-7]. Furthermore, since slide-level multimodal self-supervised 
signals fail to guide patch-level feature extraction, the pretraining objectives' 
misalignment of these two independent stages inevitably results in suboptimal 
performance. 

[1] Jaume G, Oldenburg L, Vaidya A, et al. Transcriptomics-guided slide representation 
learning in computational pathology[C]//Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition. 2024: 9632-9644. 



[2] Ding T, Wagner S J, Song A H, et al. Multimodal whole slide foundation model for 
pathology[J]. arXiv preprint arXiv:2411.19666, 2024. 

[3] Shaikovski G, Vorontsov E, Casson A, et al. PRISM2: Unlocking Multi-Modal General 
Pathology AI with Clinical Dialogue[J]. arXiv preprint arXiv:2506.13063, 2025. 

[4] Ilse M, Tomczak J, Welling M. Attention-based deep multiple instance 
learning[C]//International conference on machine learning. PMLR, 2018: 2127-2136. 

[5] Shao Z, Bian H, Chen Y, et al. Transmil: Transformer based correlated multiple instance 
learning for whole slide image classification[J]. Advances in neural information processing 
systems, 2021, 34: 2136-2147. 

[6] Oquab M, Darcet T, Moutakanni T, et al. Dinov2: Learning robust visual features without 
supervision[J]. arXiv preprint arXiv:2304.07193, 2023. 

[7] Radford A, Kim J W, Hallacy C, et al. Learning transferable visual models from natural 
language supervision[C]//International conference on machine learning. PmLR, 2021: 8748-
8763. 

2. I do agree with the author’s 2nd point that allowing the tile encoder to be updated with 
slide/patient level pathology reports and gene expression profiles is a novel contribution. 
However, I do find it difficult to understand the evaluation of contrastive learning for 
pathology reports and gene expression profiles. As far as I understand, pathology reports do 
not usually contain information about gene expression. 

Response:  

We thank the reviewer for raising this important point. We clarify the intrinsic link between 
pathology reports and gene expression through two key aspects supported by clinical practice 
and biological evidence: 

1. Pathology reports routinely include molecular profiling data. Standard pathology 
reports (especially for cancer diagnostics) frequently incorporate molecular testing 
results such as: Immunohistochemistry (IHC) markers (e.g., ER/PR/HER2 status in 
breast cancer, PD-L1 in lung cancer), targeted gene sequencing (e.g., EGFR, KRAS 
mutations), in-situ hybridization (ISH) for gene amplification (e.g., HER2 FISH), etc. As 
shown in Figure 1, two examples of pathology reports used in pretraining explicitly 
documenting these molecular information highlighted in the red box, directly 
reflecting gene expression phenotypes. 

2. Morphological features in histology are biomarkers of gene activity. The 
connection between histopathology and gene expression is biologically fundamental: 
(1) IHC visualizes protein expression products of specific genes (e.g., HER2 protein 
overexpression from ERBB2 gene amplification [8]). (2) Histomorphological patterns 
included in reports (e.g., granulomatous inflammation in lung cancer in the green 
box of Figure 1) correlate with upregulation of checkpoint molecules (e.g., PD-L1 [9-
10] ). 

Thus, pathology reports establish phenotype-genotype correlations through both direct 
molecular profiling and morphology-derived biomarkers. 
 



[8] Yoon H H, Shi Q, Sukov W R, et al. Association of HER2/ErbB2 expression and gene 
amplification with pathologic features and prognosis in esophageal adenocarcinomas[J]. 
Clinical Cancer Research, 2012, 18(2): 546-554. 
[9] Braun N A, Celada L J, Herazo-Maya J D, et al. Blockade of the programmed death-1 
pathway restores sarcoidosis CD4+ T-cell proliferative capacity[J]. American journal of 
respiratory and critical care medicine, 2014, 190(5): 560-571. 
[10] Cornejo C M, Haun P, English III J, et al. Immune checkpoint inhibitors and the 
development of granulomatous reactions[J]. Journal of the American Academy of 
Dermatology, 2019, 81(5): 1165-1175. 

 

 
Figure 1. Examples of pathology reports. (a) from breast cancer and (b) from lung cancer, 
where the text highlighted in the red box demonstrates the connection between pathology 
reports and gene expression profiles, and the one in the green box showcases the 
morphological descriptions in pathology reports. 

3. As for the 3rd point about the task, I do appreciate the added amount of work. I think 
authors are very thorough compared to existing pathology foundation model papers. I do 
have concerns over the usability of some clinical end points, like disease-free survival, which 
is often study and cohort-dependent. It could give a false sense of generality. 

Response:  

We sincerely appreciate the reviewer's recognition of our comprehensive evaluation 
framework and their thoughtful concerns regarding the clinical endpoints. We fully 
acknowledge that endpoints like disease-free survival (DFS) and recurrence-free survival (RFS) 
can indeed vary across studies, and all endpoints in our study were chosen based on their 
broad usage in clinical oncology and alignment with public datasets, e.g. DFS for breast cancer 

(a) TCGA-E2-A158 from TCGA-BRCA (b) TCGA-18-4086 from TCGA-LUSC



and gastric cancer, and RFS for head and neck cancer. We believe this preserves the clinical 
utility that makes our findings meaningful for both researchers and practicing oncologists. 

 

4. As for comment 8, I find it confusing to include pathology reports for tasks like staging, 
grading and subtyping. The final labels in those tasks are likely to be stated in the pathology 
report already. 

Response:  

Sorry for confusion, and we appreciate the reviewer’s attention to evaluation validity. We 
want to clarify that the data used for downstream evaluation were rigorously excluded from 
pretraining data, and pathology reports were only used during pretraining (for multimodal 
alignment with WSIs). All downstream tasks were evaluated using H&E diagnostic slides only 
as the input with no text data. This aligns with standard foundation model paradigms (e.g., 
CONCH [11], where text aids pretraining but isn’t available during inference). This clarification 
has been added in Methods section 4.3. 

[11] Lu M Y, Chen B, Williamson D F K, et al. A visual-language foundation model for 
computational pathology[J]. Nature medicine, 2024, 30(3): 863-874. 

 

5. Minor question: 

What do the authors mean by “microscopic-level pathology slides” as an additional modality? 
I can see pathology reports and gene expression profiles being used to train the slide-level 
model. I can not link “microscopic-level pathology slides” to the training framework presented 
in the paper. 

Response: We sincerely appreciate the reviewer's careful reading and this opportunity to 
clarify our terminology. We acknowledge that the phrase "microscopic-level pathology slides" 
in our original manuscript caused confusion, and we have removed this potentially ambiguous 
expression in our revised version. The term "microscopic-level" was intended to suggest that 
histopathology slides are examined under microscopes during clinical diagnosis, and we have 
removed it in the revised manuscript. 

  



Our response to Reviewer#3:  

1. We thank the authors for their detailed response and commend the improved clarity and 
expanded ablation studies in the revised manuscript. The new experiments systematically 
assess different combinations of pre-training modalities: pathology images, pathology reports, 
and RNA-Seq data. Notably, the results indicate that for mSTAR, pre-training on pathology 
alone performs comparably to combinations with either reports or RNA-Seq. A marginal 
performance gain of +0.01 in Avg C-Index is observed only when all three modalities are 
combined. The authors interpret this as evidence of scalable multimodal integration. But the 
tremendous pre-training effort that is required does not justify to use the mSTAR method 
compared to other models like UNI or CONCH.  

Previous literature has already demonstrated that dual-modality pre-training (e.g., pathology 
+ reports or pathology + RNA-Seq) can outperform unimodal pre-training. Thus, the added 
value of including a third modality with the specialized slide-level contrastive learning and 
fine-tuning applied in this study remains insufficiently substantiated. 

Response:  

We thank the reviewer for engaging deeply with our revised analyses. We address the 
concerns about multimodal scalability through new evidence that substantiates the unique 
advantages of our approach: 

1) The impact of multimodal data on performance gains differs significantly depending on 
the task type. While the previous version only reported average overall survival (OS) results 
across 9 TCGA datasets, in this revised manuscript we have systematically evaluated 
proportional datasets for each task category (24 datasets), as shown in Figure 2a.  

The results demonstrate consistent performance improvements across all types of tasks, with 
a notable average increase of 5.3% specifically observed in the 12 molecular prediction tasks 
compared to that of only 2 modalities. More interestingly, we found that text modalities 
outperform genomic data in diagnostic tasks, which intuitively corresponds to the diagnostic-
rich nature of pathology reports. For molecular and prognostic predictions, textual and 
genomic data demonstrated comparable performance, consistent with prior findings [12] that 
both phenotype (text-derived) and genotype features contribute to stratification. 

Given the substantial heterogeneity across cancer types and varying prediction difficulty 
among tasks, we found that average performance metrics were insufficient to reflect true 
improvements. Therefore, we also present detailed task-specific performance for each 
dataset in Figure 3. In 21 out of 24 datasets, the three-modality models demonstrated 
consistent performance improvements over dual-modality combinations. 

2) mSTAR’s design is highly resource-efficient, while achieve comparable performance with 
SOTA pathology foundation models.  

• Parameter-wise, compared to Virchow [13] of 631M, a SOTA pathology foundation 
model, mSTAR merely consists of 415M (34% reduction) parameters including the 
303M visual encoder (the same as UNI [14]), 2.67M TransMIL module, 0.94M genomic 
Performer, and 108M BioBERT text encoder (smaller than CONCH [11]).  

• Data-wise, when benchmarked against UNI's performance baseline, we compared 
mSTAR with Virchow as shown in Figure 2d. mSTAR achieves competitive 
improvements with only 22K additional slide-level pretraining samples—a far smaller 



fraction of the 1.39M extra slides required by Virchow for better performance gains. 
This 53× reduction in additional data demonstrates that multimodal data brought 
higher efficiency per sample compared to vision-only brute-force data scaling, 
significantly reducing pretraining costs in GPU-hours while even enhancing clinical-
grade accuracy. Our findings offer a remarkable advantage and a practical pathway in 
scaling pathology foundation models, especially for resource-constrained medical AI 
development where large-scale data collection is often impractical. 

• Training-wise, while UNI requires 4x8 A100 80GB GPUs (4 nodes, each with 8 GPUs) 
for 32 GPU hours (1024 GPU hours in total), mSTAR merely needs 4 H800 80GB GPUs 
(1 node, each with 4 GPUs) for 7 days (672 GPU hours in total). While Virchow does 
not report exact training durations, its substantially larger model size (631M vs. our 
414M parameters) and 53× greater pretraining data (1.39M vs. our 22K slides) 
inevitably require far greater computational resources. More comparison can be seen 
in Table 1 and 2. 

The improvement is substantial in the current context. mSTAR achieves Virchow's 
performance with just 2% of its additional pretraining data—a clear indication that the 
achieved improvements are not only substantial but also highly efficient. This reveals that 
multimodal scaling yields substantially greater returns than large-scale vision-only expansion, 
effectively liberating the field of PFMs from reliance on massive slide collections. 

 

Table 1, Resources Comparison between scaling slides only (Virchow) v.s. scaling modalities 
(mSTAR) for pretraining, with UNI as a baseline. * means that the pretraining GPU hours are 
coarsely estimated based on that of UNI, since it didn't report such pretraining details. 

 
Table 2, Performance Comparison between scaling slides only (Virchow) v.s. scaling 
modalities (mSTAR) for pretraining, with UNI as a baseline. The best-performing model for 
each metric is bolded. Std is given by bootstrapping with 1,000 bootstraps. Both Virchow and 
mSTAR underwent one-sided Wilcoxon signed-rank tests against the baseline UNI. For results 
outperforming the baseline, all unmarked (*) ones exhibited statistically significant 
differences at P < 0.001. 



 
 

[12] Cuny M, Kramar A, Courjal F, et al. Relating genotype and phenotype in breast cancer: an 
analysis of the prognostic significance of amplification at eight different genes or loci and of 
p53 mutations[J]. Cancer research, 2000, 60(4): 1077-1083. 

[13] Vorontsov E, Bozkurt A, Casson A, et al. A foundation model for clinical-grade 
computational pathology and rare cancers detection[J]. Nature medicine, 2024, 30(10): 2924-
2935. 

[14] Chen R J, Ding T, Lu M Y, et al. Towards a general-purpose foundation model for 
computational pathology[J]. Nature medicine, 2024, 30(3): 850-862. 

 

 

Task Dataset UNI Virchow mSTAR
Pathlogical Diagnosis CAMELYON (idpt) 0.9819±0.0184 0.9683±0.0248 0.9935±0.0098
Pathlogical Diagnosis NFGC_Perineural (idpt) 0.9750±0.0349 0.9270±0.0685 0.9776±0.0316
Pathlogical Diagnosis BRCA-PathSubtype (out) 0.9391±0.0489 0.9449±0.0526 0.9314±0.0510
Molecular Prediction BRCA_PIK3CA (out) 0.6969±0.0315 0.6669±0.0492 0.7215±0.0318
Molecular Prediction TCGA_BRCA_HER2 (out) 0.7636±0.0305 0.7287±0.0506 0.7679±0.0310
Molecular Prediction TCGA_BRCA_PR (out) 0.5028±0.0195 0.5080±0.0258 0.5254±0.0183
Molecular Prediction BRCA_MolSubtype (out) 0.7756±0.0219 0.7659±0.0301 0.8057±0.0191
Molecular Prediction IHC_ZJ1_HER2_Level (idpt) 0.7758±0.0132 0.7628±0.0196 0.7951±0.0125
Molecular Prediction IHC_ZJ1_ER_Level (idpt) 0.7892±0.0111 0.7960±0.0152 0.8020±0.0107
Molecular Prediction IHC_ZJ1_HER2 (ext) 0.6153±0.0173 0.6558±0.0226 0.6429±0.0162
Molecular Prediction IHC_ZJ1_PR (ext) 0.5490±0.0052 0.5733±0.0063 0.5673±0.0047
Molecular Prediction ZJ1_Breast_MolSubtype (ext) 0.7844±0.0046 0.7582±0.0066 0.7946±0.0045
Survival Prediction OS_BRCA (out) 0.6908±0.1048 0.6525±0.0506 0.7076±0.0896
Survival Prediction OS_CRC (out) 0.6906±0.0835 0.6140±0.0577 0.6895±0.0836
Survival Prediction OS_GBMLGG (out) 0.7905±0.0434 0.7790±0.0206 0.7923±0.0426
Survival Prediction OS_HNSC (out) 0.6516±0.0798 0.6000±0.0381 0.6604±0.0794
Survival Prediction OS_KIRC (out) 0.7155±0.0659 0.6967±0.0395 0.7027±0.0890
Survival Prediction OS_LUAD (out) 0.6312±0.0996 0.6194±0.0457 0.6329±0.0976
Survival Prediction OS_LUSC (out) 0.6273±0.0771 0.5382±0.0463 0.6323±0.0785
Survival Prediction OS_SKCM (out) 0.6254±0.0776 0.6207±0.0423 0.6281±0.0761
Survival Prediction OS_UCEC (out) 0.7845±0.1012 0.7477±0.0556 0.8092±0.0865



 
Figure 2. Ablation Studies. a, averaged performance on pathological diagnosis (3 datasets), 
molecular prediction (12 datasets) and survival prediction (9 datasets) , where `Before' refers 
to before pretraining, and ̀ P', ̀ T' and ̀ G' indicate pathology slides, pathology reports and gene 
data, respectively. b, visualization of feature space evolution: from before pretraining (initial) 
to Stage 1 (pretrained aggregator) and Stage 2 (mSTAR), where the areas in red bounding box 
are multiple tumor regions (1-7) of the case of patient_042_node_3 of CAMELYON17 dataset. 
Note that different tumor areas correspond to different spatial positions. c, averaged 
performance (9 TCGA OS datasets) for ablating different pretraining objectives (Inter-modal 
Loss and Inter-cancer Loss) for survival prediction. d, averaged performance (24 datasets) and 
resources comparisons between scaling slides only (Virchow) v.s. scaling modalities (mSTAR) 
for pretraining, with UNI as a baseline. Detailed performances of every dataset are presented 
in  Figure 3 and detailed comparisons are showcased in Table 1 and 2. 
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Figure 3. Performance on each dataset in ablation studies (24 datasets), where the red curve 
indicates the trajectory of ‘before pretraining → + genes → + text’, while the green one 
represents the trajectory of ‘before pretraining → + text → + genes’. One-sided Wilcoxon 

Su
rv

iv
al

Pr
ed

ic
tio

n
Pa

th
ol

og
ic

al
 D

ia
gn

os
is

M
ol

ec
ul

ar
 P

re
di

ct
io

n

P = 0.055 P = 0.132P = 0.083

P = 0.071

P = 0.131



signed-rank tests were conducted for every pairwise comparisons along the trajectory. Unless 
otherwise specified, reported differences are statistically significant (P < 0.05). (Zoom in for 
details.) 

 

2. A key limitation of this work is the entanglement of two experimental variables: the 
introduction of a third pre-training modality and a novel pre-training scheme involving fine-
tuning of the image encoder (UNI). In contrast, models such as GigaPath, Tangle, and CHIEF 
rely on frozen feature extractors, allowing clearer attribution of performance gains to specific 
design choices. Without a controlled disentanglement of these factors, it becomes difficult to 
isolate the contribution of each component to the final performance. 

Response:  

We appreciate the reviewer’s insightful observation regarding the need to disentangle the 
effects of our methodological innovations. We would like to clarify that our experimental 
design explicitly decouples these variables through staged evaluations and controlled 
comparisons: 

1) Disentangling the Third Modality Contribution: The introduction of the third modality 
(gene data or pathology reports) is only involved in the pre-training of aggregator at the Stage 
1. Therefore, to demonstrate its contribution, we only need to compare the performance of 
pretraining on three modalities with ‘before aggregator pre-training’ and ‘after pre-training 
with two modalities’. As shown in Figures 2 and 3, and discussed in Question 1's answer 
(points 1 and 2), the three-modality approach demonstrates superior performance both in 
terms of average results and task-specific dataset. 

2) Disentangling the Novel Pre-training Scheme: The novel pre-training scheme consists of 
two stages. Stage 1 focuses on training the aggregator while keeping the extractor frozen. Its 
effectiveness is evaluated by ablating the contribution of the third pre-training modality (as 
previously discussed). Stage 2 performs self-taught training of the extractor with the 
aggregator frozen. Quantitatively, one the one hand, as shown in Fig. 2a, the performance on 
P+T+G (three modalities) outperforms that of ‘before pretraining’, which validates the 
effectiveness of Stage 1. On the other hand, the extractor’s improvement is validated by 
comparing its performance to the UNI, the baseline model (before self-taught training), with 
results verified across 97 tasks. This underscores the contribution of Stage 2. Qualitatively, 
from a feature-space perspective, we visualize the evolutionary dynamics of each stage in Fig. 
2b. The clusters progressively coalesce, demonstrating clear separation between tumor and 
non-tumor regions as training advances. Both quantitative performance evaluation and 
qualitative feature-space visualization consistently verify the effectiveness of each training 
phase. 

 

3. Furthermore, the study lacks an investigation into scaling laws with respect to model size, 
which are essential for understanding the cost-benefit trade-offs of integrating additional 
modalities. Given the minimal performance improvements reported, a detailed analysis of 
training efficiency and computational overhead is necessary to assess the practical utility of 
the proposed approach. 

Response:  



We appreciate the reviewer's suggestion regarding scaling laws and computational trade-offs, 
and we have discussed this in the Section 3. While we agree these are important 
considerations, our study specifically investigates modality scalability rather than model size 
scaling, as the latter has been extensively examined in prior foundation model research 
[13][15]. Our work builds upon these established scaling principles while focusing on the novel 
dimension of multimodal integration. A detailed analysis of training efficiency and 
computational overhead is provided in points 3 and 4 of the Question 1's answer, along with 
Table 1. 

[15] Zimmermann E, Vorontsov E, Viret J, et al. Virchow2: Scaling self-supervised mixed 
magnification models in pathology[J]. arXiv preprint arXiv:2408.00738, 2024. 

 

5. Finally, if the goal is to evaluate modality scaling, we encourage the authors to consider 
broader avenues beyond RNA-Seq, such as including IHC or other specialized stainings (e.g., 
https://arxiv.org/abs/2408.02859), which have shown promising results in conjunction with 
scaled transformer architectures.  

Response:  

We sincerely appreciate this insightful suggestion regarding broader modality scaling avenues, 
including IHC and specialized stained slides. The proposed direction aligns perfectly with our 
long-term vision of extensible multimodal learning in computational pathology and we are 
working on that. In the current work, we focused on establishing a robust pretraining 
framework for integrating three fundamental data types. We thank the reviewer for 
highlighting this important research trajectory that advances our shared goal of 
comprehensive multimodal integration for advancing precision oncology. As noted in our 
Discussion (Section 3), we recognize this as a critical future direction. 
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	b

